Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation

  1. Tao Zhang
  2. Liyang Wan
  3. Han Xiao
  4. Linfeng Wang
  5. Jianzhong Hu
  6. Hongbin Lu  Is a corresponding author
  1. Xiangya Hospital Central South University, China

Abstract

The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open source GSE182997 datasets (3 sample) provided by Fang et al, we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And we furtherly performed single cell spatial transcriptomic sequencing on postnatal day 1 mice enthesis, in order to deconvoluted bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.

Data availability

All single-cell datasets created during this study are publicly available at the Gene Expression Omnibus (GSE223751). Any additional information required to re-analyze the data in the paper is available from the corresponding author upon request.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tao Zhang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liyang Wan

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2194-1080
  3. Han Xiao

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Linfeng Wang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianzhong Hu

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongbin Lu

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    For correspondence
    hongbinlu@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7749-3593

Funding

National Natural Science Foundation of China (82230085)

  • Hongbin Lu

National Natural Science Foundation of China (82272572)

  • Hongbin Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental protocols were approved by the Animal Ethics Committee of Central South University (No. 2022020058).

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,004
    views
  • 312
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tao Zhang
  2. Liyang Wan
  3. Han Xiao
  4. Linfeng Wang
  5. Jianzhong Hu
  6. Hongbin Lu
(2023)
Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation
eLife 12:e85873.
https://doi.org/10.7554/eLife.85873

Share this article

https://doi.org/10.7554/eLife.85873

Further reading

    1. Developmental Biology
    Jasper Janssens, Pierre Mangeol ... Frank Schnorrer
    Tools and Resources

    Recently, we have achieved a significant milestone with the creation of the Fly Cell Atlas. This single-nuclei atlas encompasses the entire fly, covering the entire head and body, in addition to all major organs. This atlas catalogs many hundreds of cell types, of which we annotated 250. Thus, a large number of clusters remain to be fully characterized, in particular in the brain. Furthermore, by applying single-nuclei sequencing, all information about the spatial location of the cells in the body and of about possible subcellular localization of the mRNAs within these cells is lost. Spatial transcriptomics promises to tackle these issues. In a proof-of-concept study, we have here applied spatial transcriptomics using a selected gene panel to pinpoint the locations of 150 mRNA species in the adult fly. This enabled us to map unknown clusters identified in the Fly Cell Atlas to their spatial locations in the fly brain. Additionally, spatial transcriptomics discovered interesting principles of mRNA localization and transcriptional diversity within the large and crowded muscle cells that may spark future mechanistic investigations. Furthermore, we present a set of computational tools that will allow for easier integration of spatial transcriptomics and single-cell datasets.

    1. Cell Biology
    2. Developmental Biology
    Yuhkoh Satouh, Takaki Tatebe ... Ken Sato
    Research Article

    Mouse oocytes undergo drastic changes in organellar composition and their activities during maturation from the germinal vesicle (GV) to metaphase II (MII) stage. After fertilization, the embryo degrades parts of the maternal components via lysosomal degradation systems, including autophagy and endocytosis, as zygotic gene expression begins during embryogenesis. Here, we demonstrate that endosomal-lysosomal organelles form large spherical assembly structures, termed endosomal-lysosomal organellar assemblies (ELYSAs), in mouse oocytes. ELYSAs are observed in GV oocytes, attaining sizes up to 7–8 μm in diameter in MII oocytes. ELYSAs comprise tubular-vesicular structures containing endosomes and lysosomes along with cytosolic components. Most ELYSAs are also positive for an autophagy regulator, LC3. These characteristics of ELYSA resemble those of ELVA (endolysosomal vesicular assemblies) identified independently. The signals of V1-subunit of vacuolar ATPase tends to be detected on the periphery of ELYSAs in MII oocytes. After fertilization, the localization of the V1-subunit on endosomes and lysosomes increase as ELYSAs gradually disassemble at the 2-cell stage, leading to further acidification of endosomal-lysosomal organelles. These findings suggest that the ELYSA/ELVA maintain endosomal-lysosomal activity in a static state in oocytes for timely activation during early development.