Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation

  1. Tao Zhang
  2. Liyang Wan
  3. Han Xiao
  4. Linfeng Wang
  5. Jianzhong Hu
  6. Hongbin Lu  Is a corresponding author
  1. Xiangya Hospital Central South University, China

Abstract

The attachment site of the rotator cuff (RC) is a classic fibrocartilaginous enthesis, which is the junction between bone and tendon with typical characteristics of a fibrocartilage transition zone. Enthesis development has historically been studied with lineage tracing of individual genes selected a priori, which does not allow for the determination of single-cell landscapes yielding mature cell types and tissues. Here, in together with open source GSE182997 datasets (3 sample) provided by Fang et al, we applied Single-cell RNA sequencing (scRNA-seq) to delineate the comprehensive postnatal RC enthesis growth and the temporal atlas from as early as postnatal day 1 up to postnatal week 8. And we furtherly performed single cell spatial transcriptomic sequencing on postnatal day 1 mice enthesis, in order to deconvoluted bone-tendon junction (BTJ) chondrocytes onto spatial spots. In summary, we deciphered the cellular heterogeneity and the molecular dynamics during fibrocartilage differentiation. Combined with current spatial transcriptomic data, our results provide a transcriptional resource that will support future investigations of enthesis development at the mechanistic level and may shed light on the strategies for enhanced RC healing outcomes.

Data availability

All single-cell datasets created during this study are publicly available at the Gene Expression Omnibus (GSE223751). Any additional information required to re-analyze the data in the paper is available from the corresponding author upon request.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tao Zhang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Liyang Wan

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2194-1080
  3. Han Xiao

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Linfeng Wang

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianzhong Hu

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hongbin Lu

    Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, China
    For correspondence
    hongbinlu@hotmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7749-3593

Funding

National Natural Science Foundation of China (82230085)

  • Hongbin Lu

National Natural Science Foundation of China (82272572)

  • Hongbin Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental protocols were approved by the Animal Ethics Committee of Central South University (No. 2022020058).

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,406
    views
  • 244
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tao Zhang
  2. Liyang Wan
  3. Han Xiao
  4. Linfeng Wang
  5. Jianzhong Hu
  6. Hongbin Lu
(2023)
Single-cell RNA sequencing reveals cellular and molecular heterogeneity in fibrocartilaginous enthesis formation
eLife 12:e85873.
https://doi.org/10.7554/eLife.85873

Share this article

https://doi.org/10.7554/eLife.85873

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Nathan D Harry, Christina Zakas
    Research Article

    New developmental programs can evolve through adaptive changes to gene expression. The annelid Streblospio benedicti has a developmental dimorphism, which provides a unique intraspecific framework for understanding the earliest genetic changes that take place during developmental divergence. Using comparative RNAseq through ontogeny, we find that only a small proportion of genes are differentially expressed at any time, despite major differences in larval development and life history. These genes shift expression profiles across morphs by either turning off any expression in one morph or changing the timing or amount of gene expression. We directly connect the contributions of these mechanisms to differences in developmental processes. We examine F1 offspring – using reciprocal crosses – to determine maternal mRNA inheritance and the regulatory architecture of gene expression. These results highlight the importance of both novel gene expression and heterochronic shifts in developmental evolution, as well as the trans-acting regulatory factors in initiating divergence.

    1. Cell Biology
    2. Developmental Biology
    Deepak Adhikari, John Carroll
    Insight

    The formation of large endolysosomal structures in unfertilized eggs ensures that lysosomes remain dormant before fertilization, and then shift into clean-up mode after the egg-to-embryo transition.