Robust membrane protein tweezers reveal the folding speed limit of helical membrane proteins

  1. Seoyoon Kim
  2. Daehyo Lee
  3. WC Bhashini Wijesinghe
  4. Duyoung Min  Is a corresponding author
  1. ​Ulsan National Institute of Science and Technology, Republic of Korea

Abstract

Single-molecule tweezers, such as magnetic tweezers, are powerful tools for probing nm-scale structural changes in single membrane proteins under force. However, the weak molecular tethers used for the membrane protein studies have limited the observation of long-time, repetitive molecular transitions due to force-induced bond breakage. The prolonged observation of numerous transitions is critical in reliable characterizations of structural states, kinetics, and energy barrier properties. Here, we present a robust single-molecule tweezer method that uses dibenzocyclooctyne (DBCO) cycloaddition and traptavidin binding, enabling the estimation of the folding 'speed limit' of helical membrane proteins. This method is >100 times more stable than a conventional linkage system regarding the lifetime, allowing for the survival for ~12 h at 50 pN and ~1000 pulling cycle experiments. By using this method, we were able to observe numerous structural transitions of a designer single-chained transmembrane (TM) homodimer for 9 h at 12 pN, and reveal its folding pathway including the hidden dynamics of helix-coil transitions. We characterized the energy barrier heights and folding times for the transitions using a model-independent deconvolution method and the hidden Markov modeling (HMM) analysis, respectively. The Kramers rate framework yields a considerably low speed limit of 21 ms for a helical hairpin formation in lipid bilayers, compared to μs scale for soluble protein folding. This large discrepancy is likely due to the highly viscous nature of lipid membranes, retarding the helix-helix interactions. Our results offer a more valid guideline for relating the kinetics and free energies of membrane protein folding.

Data availability

All data and analysis codes that support the findings of this study are available in the manuscript, figure supplements, source data, and source code files.

Article and author information

Author details

  1. Seoyoon Kim

    Department of Chemistry, ​Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Daehyo Lee

    Department of Chemistry, ​Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. WC Bhashini Wijesinghe

    Department of Chemistry, ​Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Duyoung Min

    Department of Chemistry, ​Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
    For correspondence
    dymin@unist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2856-8082

Funding

National Research Foundation of Korea (2020R1C1C1003937)

  • Duyoung Min

Ulsan National Institute of Science and Technology (1.190147.01)

  • Duyoung Min

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,087
    views
  • 306
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seoyoon Kim
  2. Daehyo Lee
  3. WC Bhashini Wijesinghe
  4. Duyoung Min
(2023)
Robust membrane protein tweezers reveal the folding speed limit of helical membrane proteins
eLife 12:e85882.
https://doi.org/10.7554/eLife.85882

Share this article

https://doi.org/10.7554/eLife.85882

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.