The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra) - phosphoinositide 3-kinase (PI3K) signaling cascade to steer towards the midline during zebrafish heart tube formation

Abstract

Coordinated cell movement is a fundamental process in organ formation. During heart development, bilateral myocardial precursors collectively move towards the midline (cardiac fusion) to form the primitive heart tube. Extrinsic influences such as the adjacent anterior endoderm are known to be required for cardiac fusion. We previously showed however, that the platelet-derived growth factor receptor alpha (Pdgfra) is also required for cardiac fusion (Bloomekatz et al. 2017). Nevertheless, an intrinsic mechanism that regulates myocardial movement has not been elucidated. Here, we show that the phosphoinositide 3-kinase (PI3K) intracellular signaling pathway has an essential intrinsic role in the myocardium directing movement towards the midline. In vivo imaging further reveals midline-oriented dynamic myocardial membrane protrusions that become unpolarized in PI3K-inhibited zebrafish embryos where myocardial movements are misdirected and slower. Moreover, we find that PI3K activity is dependent on and interacts with Pdgfra to regulate myocardial movement. Together our findings reveal an intrinsic myocardial steering mechanism that responds to extrinsic cues during the initiation of cardiac development.

Data availability

All data are included in the manuscript and supporting files; Source Data files have been provided for all figures.

Article and author information

Author details

  1. Rabina Shrestha

    Department of Biology, University of Mississippi, University, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tess McCann

    Department of Biology, University of Mississippi, University, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Harini Saravanan

    Department of Biology, University of Mississippi, University, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jaret Lieberth

    Department of Biology, University of Mississippi, University, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Prashanna Koirala

    Department of Biology, University of Mississippi, University, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua Bloomekatz

    Department of Biology, University of Mississippi, University, United States
    For correspondence
    josh@olemiss.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5816-2756

Funding

American Heart Association (18CDA34080195)

  • Joshua Bloomekatz

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R15HD108782)

  • Joshua Bloomekatz

National Institute of General Medical Sciences (P20GM103460)

  • Joshua Bloomekatz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handled according to protocols approved by the University of Mississippi institutional animal care and use committee (IACUC) (protocol #21-007), in accordance with the recommendations of the National Institutes of Health (NIH).

Copyright

© 2023, Shrestha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 900
    views
  • 83
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rabina Shrestha
  2. Tess McCann
  3. Harini Saravanan
  4. Jaret Lieberth
  5. Prashanna Koirala
  6. Joshua Bloomekatz
(2023)
The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra) - phosphoinositide 3-kinase (PI3K) signaling cascade to steer towards the midline during zebrafish heart tube formation
eLife 12:e85930.
https://doi.org/10.7554/eLife.85930

Share this article

https://doi.org/10.7554/eLife.85930

Further reading

    1. Developmental Biology
    Valeria Sulzyk, Ludmila Curci ... Patricia S Cuasnicu
    Research Article

    Numerous reports showed that the epididymis plays key roles in the acquisition of sperm fertilizing ability but its contribution to embryo development remains less understood. Female mice mated with males with simultaneous mutations in Crisp1 and Crisp3 genes exhibited normal in vivo fertilization but impaired embryo development. In this work, we found that this phenotype was not due to delayed fertilization, and it was observed in eggs fertilized by epididymal sperm either in vivo or in vitro. Of note, eggs fertilized in vitro by mutant sperm displayed impaired meiotic resumption unrelated to Ca2+ oscillations defects during egg activation, supporting potential sperm DNA defects. Interestingly, cauda but not caput epididymal mutant sperm exhibited increased DNA fragmentation, revealing that DNA integrity defects appear during epididymal transit. Moreover, exposing control sperm to mutant epididymal fluid or to Ca2+-supplemented control fluid significantly increased DNA fragmentation. This, together with the higher intracellular Ca2+ levels detected in mutant sperm, supports a dysregulation in Ca2+ homeostasis within the epididymis and sperm as the main factor responsible for embryo development failure. These findings highlight the contribution of the epididymis beyond fertilization and identify CRISP1 and CRISP3 as novel factors essential for sperm DNA integrity and early embryo development.

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.