Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC)

  1. Zaki A Sherif  Is a corresponding author
  2. Christian R Gomez
  3. Thomas J Connors
  4. Timothy J Henrich
  5. William Brian Reeves
  6. RECOVER Mechanistic Pathway Task Force
  1. Department of Biochemistry & Molecular Biology, Howard University College of Medicine, United States
  2. Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), United States
  3. Department of Pediatrics, Division of Critical Care, Columbia University Vagelos College of Physicians and Surgeons and New York - Presbyterian Morgan Stanley Children's Hospital, United States
  4. Division of Experimental Medicine, University of California, United States
  5. Department of Medicine, Joe R. and Teresa Lozano Long School of Medicine, University of Texas, United States
1 figure and 1 table

Figures

SARS-CoV-2’s entry into the respiratory system and its binding to ACE2 receptor produces a cascade of host responses ranging from chronic inflammation to endothelial dysregulation.

Tables

Table 1
Proposed molecular, pathobiological, and pathophysiological mechanisms related to Long COVID symptoms.
Dysregulated systemMechanismBiological/molecular factor*Signaling pathwayReference
AutonomicAutoimmune dysfunction of the autonomic nervous system; cardiovascular autonomic dysfunction (CVAD); post-intensive care syndrome (PICS); orthostatic intolerance (OI); syncope; postural orthostatic tachycardia syndrome (POTS)-like dysfunction; (ME/CFS)-like dysfunction; antinuclear antibodiesGanglionic, adrenergic, and muscarinic acetylcholine receptor antibodies
G-protein-coupled receptor autoantibodies
Sympathetic nervous system;
cytokine storms; activation of renin–angiotensin system
Al-Kuraishy et al., 2021; Baig et al., 2020; Bisaccia et al., 2021; Escorihuela et al., 2020; Gunning et al., 2019; Li et al., 2020a; Nelson et al., 2019; Shaw et al., 2019; van Campen et al., 2020; Wu and Yang, 2020;
CardiovascularMyocardial hypertrophy; focal myocardial fibrosis; acute myocardial infarction; cardiac hypertrophy; endothelial dysfunction and coagulation activation; neutrophil extracellular traps (NETs); inflammation-coagulation (Factor XII); direct complement activation (inflammation)Thrombin
Plasmin
Fibrinolysis
NT-proBNP
cTnI
Serum lactate dehydrogenase
Creatine kinase
Aryl hydrocarbon receptor (AhR) signaling through an IDO-Kyn-dependent pathway (hypoxia induction)Baldi et al., 2020; Basso et al., 2020; Flores et al., 2019; Gao et al., 2020; Hanneman et al., 2022; Lala et al., 2020; Liu et al., 2020b; Mueller et al., 2021; Parohan et al., 2020; Puntmann et al., 2020; Shi et al., 2020; Wallentin et al., 2020
EndocrineDamage to thyroid gland; thyroiditis/thyrotoxicosisThyroxin-3, ACE2, TMPRSS2The Th17 and the AGE/RAGE signaling pathwaysClarke et al., 2022; Lazartigues et al., 2020; Wei et al., 2007; Wu et al., 2021
EndothelialEndothelialitis; thromboembolism; endothelial glycocalyx damagesP-Sel, vWF, and D-dimer
Endothelin-1 (ET-1)
Angiotensin II
Proinflammatory cytokines and chemokines
Plasma heparinase
Bradykinin pathwayBuijsers et al., 2020; Flores et al., 2019; Mueller et al., 2021; Osburn et al., 2022; Scherbakov et al., 2020; Zha et al., 2022
GastrointestinalImpaired barrier function; gut inflammation, altered serotonin metabolism and gut microbiota dysbiosis, Ruminococcus gnavus positively correlated with inflammatory markers; Clostridia was negatively correlated, fungal translocation leading to NF-κB activation and inflammation Ruminococcus gnavus,
Fecal calprotectin
Plasma serotonin (5-hydroxytrytamine, 5-HT)
Interferon gamma (IFN-γ) signalingChandrashekhar Joshi and Pozzilli, 2022; Giron et al., 2022; Schultheiss et al., 2022
HematologicalVascular dysregulation; hypercoagulopathy; endothelialitis; hemostatic changes that leave the endothelium inflamed, pre-adhesive, and prothrombotic; thrombocytopenia, deep vein thrombosisPlasminogen activator inhibitor factor I (PAI)
Tissue factor (TF)
von Willebrand factor (vWF)
D-dimer
Hb
GM-CSF
p38 MAPK;
Antibody-dependent cellular toxicity
Aird, 2007; Boisramé-Helms et al., 2013; Giustino et al., 2020; Hamming et al., 2004; Hamming et al., 2007; Hussman, 2020; Liu et al., 2020a; Rahman et al., 2021; Riphagen et al., 2020; Zachariah et al., 2020
ImmunologicalDysregulated and heightened immune system; prolonged inflammation leading to multiorgan dysfunction; cytokine release syndrome (CRS); Mast Cell Activation Syndrome (MCAS); neutrophil extracellular traps (NETs); pattern recognition receptors (PRRs) including Toll-like receptor (TLR); retinoic acid-inducible gene-I (RIG-I)-like receptors; oxidative stressIL-1β, IL-2, IL-6 IL- 8, IL-10
IL-IL-12, IL-17 IL-18
IFN-γ, NF-κB;
IFN-I and IFN-III
TNF,
CXCL-10,
p38 MAPK
JAKs and STATs
GM-CSF
TGF- β
ESR
JAK/STAT; Toll-like receptor pathways (TLR-3 and TLR 7/8); AKT/mTOR/MAPK pathway; FcyRIIA;
NF-κB p65 and p38 MAPK, 1/2 (STAT1/2) pathway
Blanco-Melo et al., 2020; Feng et al., 2019; Guo and Thomas, 2017; Jose and Manuel, 2020; Li and Verma, 2002; O’Shea et al., 2015; Pablos et al., 2020; Ronco and Reis, 2020; Tarentino and Maley, 1975; Tay et al., 2020; Tergaonkar et al., 2005; Totura et al., 2015; Wirth and Scheibenbogen, 2021; Ye et al., 2020; Zhang et al., 2020; Zhao and Zhao, 2020
NeurologicalNeuro-inflammation; coagulopathy; micro-thrombosis; aberrant immune response; metabolic brain disorders; stroke; Guillain–Barré syndrome; hemodynamic and coagulation disorders; arrhythmia; nervous system damageIL-18, IL-6, and IL-8
CCL-11
Neurofilament light (NFL)
Glial fibrillary acidic protein (GFAP)
Humoral and retrograde neural signals;
blood–brain barrier (BBB)
Awogbindin et al., 2021; Castanares-Zapatero et al., 2022; Dando et al., 2014; Fernández-Castañeda et al., 2022a; Fernández-Castañeda et al., 2022b; Frere et al., 2022; Holmes et al., 2021; Lauer et al., 2018; Matschke et al., 2020; Pan et al., 2020; Poon et al., 2015; Proal and VanElzakker, 2021; Sahin et al., 2022; Song et al., 2020 ; Tate et al., 2022; VanElzakker, 2013; Wostyn, 2021; Wu et al., 2020
PancreaticDirect insulin resistance and beta cell damage; indirect autoimmunity inflammation; stress and steroid-induced hyperglycemiaPKR, PERK, ISR via viral RNA and Cytokine storm, IRS
IL-6 and TNF-α
REST (RE1-silencing transcription factor)
Amylase and lipase
HLA
Propionic acid
Isobutyric acid
Insulin signaling pathway, ISRShin et al., 2022
RenalGlomerulopathy; microangiopathyACE2 receptor,
IFN-I and IFN-III
Renin–angiotensin–aldosterone system (RAAS) disordersBlanco-Melo et al., 2020; Hamming et al., 2004; Harmer et al., 2002; Nalbandian et al., 2021 Tay et al., 2020; Zou et al., 2020
RespiratoryPulmonary fibrosis; pulmonary thromboembolism; pneumonia; pulmonary vascular damage; cytokine release syndrome; dysbiosis (increased Staphylococcus cohnii and Pasteurella multocida); lipid metabolism; beta-oxidation; amino acid metabolism; and carbohydrate metabolism;
hyperactivated T-lymphocytes and inflammatory macrophages; NETosis
TNF-α, IL-1
IL-IL-1β, IL-6
IL-12
MCP-1
GM-CSF
CCL19
CCR6 + Th17
IL-8 (CXCL8)
Insulin/IGF signaling pathway
Citrate cycle; respiratory electron transport chain;
Th17 cell differentiation pathway
Ackermann et al., 2020; Budhraja et al., 2022; D’Errico et al., 2020; George et al., 2020; Griffin et al., 2020; Grosse et al., 2020; Jin et al., 2021; Jonigk et al., 2022; Kosuge et al., 2012; Medina-Enríquez et al., 2020; Morganstein et al., 2021; Sakr et al., 2020; Shin et al., 2022; Sidarta-Oliveira et al., 2020; Verdecchia et al., 2020; Xie et al., 2021; Yaméogo et al., 2011; Ye et al., 2020
Multisystem Inflammatory Syndrome in Children (MIS-C)Kawasaki disease; cardiac involvement with macrophage activation; persistent T-cell immune response; mucosal barrier breakdownIL-6 and IL-1Ra???Feldstein et al., 2020; Sadanandam et al., 2020
  1. *

    and arrows indicate increased and decreased levels, respectively, of biological and/or molecular factors.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zaki A Sherif
  2. Christian R Gomez
  3. Thomas J Connors
  4. Timothy J Henrich
  5. William Brian Reeves
  6. RECOVER Mechanistic Pathway Task Force
(2023)
Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC)
eLife 12:e86002.
https://doi.org/10.7554/eLife.86002