Ketamine's rapid antidepressant effects are mediated by Ca2+-permeable AMPA receptors

Abstract

Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within one hour after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.

Data availability

Source Data files have been provided for Figures (Fig. 1-6) that contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Anastasiya Zaytseva

    Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Evelina Bouckova

    Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. McKennon J Wiles

    Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madison H Wustrau

    Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabella G Schmidt

    Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hadassah Mendez-Vazquez

    Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Latika Khatri

    Department of Cell Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Seonil Kim

    Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, United States
    For correspondence
    seonil.kim@colostate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0451-2180

Funding

Colorado State University

  • Anastasiya Zaytseva
  • Evelina Bouckova
  • McKennon J Wiles
  • Madison H Wustrau
  • Isabella G Schmidt
  • Seonil Kim

Boettcher Foundation

  • Seonil Kim

NIH/NCATS Colorado CTSA Grant (UL1 TR002535)

  • Seonil Kim

NIA (R03AG072102)

  • Seonil Kim

BrightFocus Foundation

  • Seonil Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#3408) of Colorado State University. The protocol was approved by the Committee on the Ethics of Animal Experiments of Colorado State University. All surgery was performed under urethane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2023, Zaytseva et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,601
    views
  • 316
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastasiya Zaytseva
  2. Evelina Bouckova
  3. McKennon J Wiles
  4. Madison H Wustrau
  5. Isabella G Schmidt
  6. Hadassah Mendez-Vazquez
  7. Latika Khatri
  8. Seonil Kim
(2023)
Ketamine's rapid antidepressant effects are mediated by Ca2+-permeable AMPA receptors
eLife 12:e86022.
https://doi.org/10.7554/eLife.86022

Share this article

https://doi.org/10.7554/eLife.86022

Further reading

    1. Neuroscience
    Kristin Nordin, Robin Pedersen ... Alireza Salami
    Research Article

    The hippocampus is a complex structure critically involved in numerous behavior-regulating systems. In young adults, multiple overlapping spatial modes along its longitudinal and transverse axes describe the organization of its functional integration with neocortex, extending the traditional framework emphasizing functional differences between sharply segregated hippocampal subregions. Yet, it remains unknown whether these modes (i.e. gradients) persist across the adult human lifespan, and relate to memory and molecular markers associated with brain function and cognition. In two independent samples, we demonstrate that the principal anteroposterior and second-order, mid-to-anterior/posterior hippocampal modes of neocortical functional connectivity, representing distinct dimensions of macroscale cortical organization, manifest across the adult lifespan. Specifically, individual differences in topography of the second-order gradient predicted episodic memory and mirrored dopamine D1 receptor distribution, capturing shared functional and molecular organization. Older age was associated with less distinct transitions along gradients (i.e. increased functional homogeneity). Importantly, a youth-like gradient profile predicted preserved episodic memory – emphasizing age-related gradient dedifferentiation as a marker of cognitive decline. Our results underscore a critical role of mapping multidimensional hippocampal organization in understanding the neural circuits that support memory across the adult lifespan.

    1. Neuroscience
    Francesca S Wong, Alina B Thomas ... Nathan M Holmes
    Research Advance

    Wong et al., 2019 used a sensory preconditioning protocol to examine how sensory and fear memories are integrated in the rat medial temporal lobe. In this protocol, rats integrate a sound-light (sensory) memory that forms in stage 1 with a light-shock (fear) memory that forms in stage 2 to generate fear responses (freezing) across test presentations of the sound in stage 3. Here, we advance this research by showing that (1) how/when rats integrate the sound-light and light-shock memories (online in stage 2 or at test in stage 3) changes with the number of sound-light pairings in stage 1; and (2) regardless of how/when it occurs, the integration requires communication between two regions of the medial temporal lobe: the perirhinal cortex and basolateral amygdala complex. Thus, ‘event familiarity’ determines how/when sensory and fear memories are integrated but not the circuitry by which the integration occurs: this remains the same.