Local angiogenic interplay of Vegfc/d and Vegfa controls brain region-specific emergence of fenestrated capillaries

  1. Sweta Parab
  2. Olivia A Card
  3. Qiyu Chen
  4. Michelle America
  5. Luke D Buck
  6. Rachael E Quick
  7. William F Horrigan
  8. Gil Levkowitz
  9. Benoit Vanhollebeke
  10. Ryota L Matsuoka  Is a corresponding author
  1. Cleveland Clinic Lerner College of Medicine, United States
  2. Weizmann Institute of Science, Israel
  3. Université Libre de Bruxelles, Belgium

Abstract

Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely-impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally-restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source data files have been provided for Figures 9 and 10.

Article and author information

Author details

  1. Sweta Parab

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9932-5117
  2. Olivia A Card

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiyu Chen

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle America

    Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Luke D Buck

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachael E Quick

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William F Horrigan

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gil Levkowitz

    Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3896-1881
  9. Benoit Vanhollebeke

    Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0353-365X
  10. Ryota L Matsuoka

    Department of Neurosciences, Cleveland Clinic Lerner College of Medicine, Cleveland, United States
    For correspondence
    matsuor@ccf.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6214-2889

Funding

National Institutes of Health (R01 NS117510)

  • Ryota L Matsuoka

Cleveland Clinic Foundation

  • Ryota L Matsuoka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph G Gleeson, University of California, San Diego, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All zebrafish husbandry was performed under standard conditions in accordance with institutional and national ethical and animal welfare guidelines. All zebrafish work was approved by the Cleveland Clinic's Institutional Animal Care and Use Committee under the protocol number 00002684. Every effort was made to minimize suffering and distress of the animals used throughout this study.

Version history

  1. Preprint posted: December 9, 2022 (view preprint)
  2. Received: January 10, 2023
  3. Accepted: May 15, 2023
  4. Accepted Manuscript published: May 16, 2023 (version 1)
  5. Version of Record published: May 30, 2023 (version 2)

Copyright

© 2023, Parab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,445
    views
  • 1,044
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sweta Parab
  2. Olivia A Card
  3. Qiyu Chen
  4. Michelle America
  5. Luke D Buck
  6. Rachael E Quick
  7. William F Horrigan
  8. Gil Levkowitz
  9. Benoit Vanhollebeke
  10. Ryota L Matsuoka
(2023)
Local angiogenic interplay of Vegfc/d and Vegfa controls brain region-specific emergence of fenestrated capillaries
eLife 12:e86066.
https://doi.org/10.7554/eLife.86066

Share this article

https://doi.org/10.7554/eLife.86066

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.