Role of the postinspiratory complex in regulating swallow-breathing coordination and other laryngeal behaviors

  1. Alyssa D Huff
  2. Marlusa K Amarante
  3. Luiz M Oliveira
  4. Jan-Marino Ramirez  Is a corresponding author
  1. Seattle Children's Research Institute, United States

Abstract

Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here we study the role of the Postinspiratory Complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing- anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiologic swallow motor sequence, since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.

Data availability

All data is publicly available (10.6084/m9.figshare.21909819).

The following data sets were generated

Article and author information

Author details

  1. Alyssa D Huff

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2817-251X
  2. Marlusa K Amarante

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luiz M Oliveira

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan-Marino Ramirez

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    jan.ramirez@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5626-3999

Funding

National Institutes of Health (HL090554)

  • Jan-Marino Ramirez

National Institutes of Health (HL144801)

  • Jan-Marino Ramirez

National Institutes of Health (HL151389)

  • Jan-Marino Ramirez

National Institutes of Health (HL160102-01)

  • Alyssa D Huff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muriel Thoby-Brisson, CNRS Université de Bordeaux, France

Ethics

Animal experimentation: All experiments and animal procedures were approved by the Seattle Children's Research Institute's Animal Care and Use Committee and were conducted in accordance with the National Institutes of Health guidelines.(IACUC #0058)

Version history

  1. Received: January 11, 2023
  2. Preprint posted: January 20, 2023 (view preprint)
  3. Accepted: June 1, 2023
  4. Accepted Manuscript published: June 5, 2023 (version 1)
  5. Version of Record published: June 13, 2023 (version 2)
  6. Version of Record updated: June 21, 2023 (version 3)

Copyright

© 2023, Huff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 746
    views
  • 134
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alyssa D Huff
  2. Marlusa K Amarante
  3. Luiz M Oliveira
  4. Jan-Marino Ramirez
(2023)
Role of the postinspiratory complex in regulating swallow-breathing coordination and other laryngeal behaviors
eLife 12:e86103.
https://doi.org/10.7554/eLife.86103

Share this article

https://doi.org/10.7554/eLife.86103

Further reading

    1. Neuroscience
    John J Stout, Allison E George ... Amy L Griffin
    Research Article

    Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6–11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.