Spatial determination and prognostic impact of the fibroblast transcriptome in pancreatic ductal adenocarcinoma

  1. Wayne Croft
  2. Hayden Pearce
  3. Sandra Margielewska-Davies
  4. Lindsay Lim
  5. Samantha M Nicol
  6. Fouzia Zayou
  7. Daniel Blakeway
  8. Francesca Marcon
  9. Sarah Powell-Brett
  10. Brinder Mahon
  11. Reena Merard
  12. Jianmin Zuo
  13. Gary Middleton
  14. Keith Roberts
  15. Rachel M Brown
  16. Paul Moss  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. The Francis Crick Institute, United Kingdom
  3. University Hospitals Birmingham NHS Foundation Trust, United Kingdom

Abstract

Pancreatic ductal adenocarcinoma has a poor clinical outcome and responses to immunotherapy are suboptimal. Stromal fibroblasts are a dominant but heterogenous population within the tumor microenvironment and therapeutic targeting of stromal subsets may have therapeutic utility. Here we combine spatial transcriptomics and scRNA-Seq datasets to define the transcriptome of tumor-proximal and tumor-distal cancer-associated fibroblasts (CAFs) and link this to clinical outcome. Tumor-proximal fibroblasts comprise large populations of myofibroblasts, strongly expressed podoplanin, and were enriched for Wnt ligand signaling. In contrast, inflammatory CAFs were dominant within tumor-distal subsets and expressed complement components and the Wnt-inhibitor SFRP2. Poor clinical outcome was correlated with elevated HIF-1a and podoplanin expression whilst expression of inflammatory and complement genes was predictive of extended survival. These findings demonstrate the extreme transcriptional heterogeneity of CAFs and its determination by apposition to tumor. Selective targeting of tumor-proximal subsets, potentially combined with HIF-1a inhibition and immune stimulation, may offer a multi-modal therapeutic approach for this disease.

Data availability

Source Data 1 contains the raw Nanostring nCounter data.

The following previously published data sets were used

Article and author information

Author details

  1. Wayne Croft

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6780-5944
  2. Hayden Pearce

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Margielewska-Davies

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5115-470X
  4. Lindsay Lim

    Cancer Research Horizons, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1394-3297
  5. Samantha M Nicol

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Fouzia Zayou

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Blakeway

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9501-7451
  8. Francesca Marcon

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7439-8291
  9. Sarah Powell-Brett

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Brinder Mahon

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Reena Merard

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Jianmin Zuo

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Gary Middleton

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Keith Roberts

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Rachel M Brown

    University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Paul Moss

    Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
    For correspondence
    p.moss@bham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6895-1967

Funding

Cancer Research UK (A21135)

  • Wayne Croft
  • Hayden Pearce
  • Sandra Margielewska-Davies
  • Lindsay Lim
  • Samantha M Nicol
  • Fouzia Zayou
  • Daniel Blakeway
  • Francesca Marcon
  • Sarah Powell-Brett
  • Brinder Mahon
  • Reena Merard
  • Jianmin Zuo
  • Gary Middleton
  • Keith Roberts
  • Rachel M Brown
  • Paul Moss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Samples were obtained from the Birmingham Human Biomaterials Resource Centre HBRC (HTA Licence 12358) ethically approved North West - Haydock Research Ethics Committee; Ref 20/NW/0001, local ethics number 18-304.

Copyright

© 2023, Croft et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,973
    views
  • 215
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wayne Croft
  2. Hayden Pearce
  3. Sandra Margielewska-Davies
  4. Lindsay Lim
  5. Samantha M Nicol
  6. Fouzia Zayou
  7. Daniel Blakeway
  8. Francesca Marcon
  9. Sarah Powell-Brett
  10. Brinder Mahon
  11. Reena Merard
  12. Jianmin Zuo
  13. Gary Middleton
  14. Keith Roberts
  15. Rachel M Brown
  16. Paul Moss
(2023)
Spatial determination and prognostic impact of the fibroblast transcriptome in pancreatic ductal adenocarcinoma
eLife 12:e86125.
https://doi.org/10.7554/eLife.86125

Share this article

https://doi.org/10.7554/eLife.86125

Further reading

    1. Cancer Biology
    Thi Mong Quynh Pham, Thanh Nhan Nguyen ... Le Son Tran
    Research Article

    In the realm of cancer immunotherapy, the meticulous selection of neoantigens plays a fundamental role in enhancing personalized treatments. Traditionally, this selection process has heavily relied on predicting the binding of peptides to human leukocyte antigens (pHLA). Nevertheless, this approach often overlooks the dynamic interaction between tumor cells and the immune system. In response to this limitation, we have developed an innovative prediction algorithm rooted in machine learning, integrating T cell receptor β chain (TCRβ) profiling data from colorectal cancer (CRC) patients for a more precise neoantigen prioritization. TCRβ sequencing was conducted to profile the TCR repertoire of tumor-infiltrating lymphocytes (TILs) from 28 CRC patients. The data unveiled both intra-tumor and inter-patient heterogeneity in the TCRβ repertoires of CRC patients, likely resulting from the stochastic utilization of V and J segments in response to neoantigens. Our novel combined model integrates pHLA binding information with pHLA-TCR binding to prioritize neoantigens, resulting in heightened specificity and sensitivity compared to models using individual features alone. The efficacy of our proposed model was corroborated through ELISpot assays on long peptides, performed on four CRC patients. These assays demonstrated that neoantigen candidates prioritized by our combined model outperformed predictions made by the established tool NetMHCpan. This comprehensive assessment underscores the significance of integrating pHLA binding with pHLA-TCR binding analysis for more effective immunotherapeutic strategies.

    1. Cancer Biology
    Honglei Zhang, Chao Liu ... Gaofeng Li
    Research Article

    Air pollution significantly impacts lung cancer progression, but there is a lack of a comprehensive molecular characterization of clinical samples associated with air pollution. Here, we performed a proteogenomic analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers from the Xuanwei area (XWLC cohort), where coal smoke is the primary contributor to the high lung cancer incidence. Genomic mutation analysis revealed XWLC as a distinct subtype of LUAD separate from cases associated with smoking or endogenous factors. Mutational signature analysis suggested that Benzo[a]pyrene (BaP) is the major risk factor in XWLC. The BaP-induced mutation hotspot, EGFR-G719X, was present in 20% of XWLC which endowed XWLC with elevated MAPK pathway activations and worse outcomes compared to common EGFR mutations. Multi-omics clustering of XWLC identified four clinically relevant subtypes. These subgroups exhibited distinct features in biological processes, genetic alterations, metabolism demands, immune landscape, and radiomic features. Finally, MAD1 and TPRN were identified as novel potential therapeutic targets in XWLC. Our study provides a valuable resource for researchers and clinicians to explore prevention and treatment strategies for air-pollution-associated lung cancers.