The neuronal calcium sensor NCS-1 regulates the phosphorylation state and activity of the Gα chaperone and GEF Ric-8A

  1. Daniel Muñoz-Reyes
  2. Levi J McClelland
  3. Sandra Arroyo-Urea
  4. Sonia Sánchez-Yepes
  5. Juan Sabín
  6. Sara Pérez-Suárez
  7. Margarita Menendez
  8. Alicia Mansilla
  9. Javier García-Nafría
  10. Stephen Sprang
  11. Maria Jose Sanchez-Barrena  Is a corresponding author
  1. Department of Crystallography and Structural Biology, Institute of Physical-Chemistry 'Blas Cabrera', CSIC, Spain
  2. Center for Biomolecular Structure and Dynamics, and Division of Biological Sciences, University of Montana, United States
  3. Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, Spain
  4. Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Spain
  5. AFFINImeter Scientific & Development team, Software 4 Science Developments, Spain
  6. Departamento de Física Aplicada, Universidad de Santiago de Compostela, Spain
  7. Department of Biological Physical-Chemisty, Institute of Physical-Chemistry 'Blas Cabrera', CSIC, Spain
  8. Ciber of Respiratory Diseases, ISCIII, Spain
  9. Department of Systems Biology, Universidad de Alcala, Spain
9 figures, 1 video, 5 tables and 1 additional file

Figures

Figure 1 with 1 supplement
The structure of NCS/target complexes.

(A) Ribbon representation of NCS protein structures bound to their targets. NCS-1/D2R (PDB: 5AER, Pandalaneni et al., 2015), NCS-1/Grk1 (PDB: 5AFP, Pandalaneni et al., 2015), Frq1/Pik1 (PDB: 2JU0, St…

Figure 1—figure supplement 1
Structural comparison of hNCS-1/Ric-8A-P with other NCS-1 complexes.

(A, B) Superposition of NCS-1/Ric-8A-P (only Ric-8A is shown in pink ribbons) with other NCS-1 structures in complex with regulatory ligands, the protein-protein interaction (PPI) inhibitor FD-44 (Ma…

The assembly of rat and human NCS-1/Ric-8A complexes.

(A) Ca2+ dependency of the interaction of the rat complex. Size exclusion chromatograms after assemblies: (i) in Ca2+-free conditions (gray), (ii) with Ca2+-preloaded NCS-1ΔH10 (magenta), and (iii) …

Figure 2—source data 1

Original gels, WBs and SEC and nano-DSF raw data.

https://cdn.elifesciences.org/articles/86151/elife-86151-fig2-data1-v2.zip
Figure 3 with 2 supplements
The structure of hNCS-1 bound to a Ric-8A peptide.

(A) Ribbon representation of the hNCS-1ΔH10/Ric-8A-P3 complex. Two views are displayed. The NCS-1 structure is shown in light purple, while Ric-8A-P3 is shown in light pink. The N- and C-termini are …

Figure 3—figure supplement 1
Structure resolution of hRic-8A peptides bound to NCS-1.

(A) Structure 1 showing the 2Fo-Fc electron density map (green) of Ric-8A-P2 (stick mode, pink). The molecular surface of NCS-1 is depicted. Squares represent magnifications of R1 and R2 regions. (B)…

Figure 3—figure supplement 2
The hNCS-1/Ric-8A-P protein-protein interface.

(A) Ribbon representation of NCS-1. Helices are labeled and residues implicated in Ric-8A recognition are displayed as light purple sticks. (B) H-bonds (black dashes) between NCS-1 (gray) and Ric-8A …

Figure 4 with 2 supplements
NCS-1 Ca2+ binding sites.

(A) Identification of Ca2+, Mg2+, and Na+ ions in the hNCS-1ΔH10/Ric-8A-P3 complex (Structure 2, see Table 1). Top: Electron density at EF-hands EF-2, -3 and -4. The 2Fo-Fc electron density map …

Figure 4—figure supplement 1
Isothermal titration calorimetry.

Thermodynamics of Ca2+ binding to NCS-1 in Na+ (top panels) or K+ (bottom panels) containing buffers. Experimental conditions as in Figure 4D. Raw data (left panels) and binding isotherms (central …

Figure 4—figure supplement 2
Biolayer interferometry (BLI) control experiments.

(A) Nano-differential scanning fluorimetry (nano-DSF) curve of the His-NCS-1 sample used in the BLI assay. (B) Representative BLI sensogram of the binding of His-NCS-1 to the Ni-NTA biosensor and …

Figure 5 with 1 supplement
Ric-8A phosphorylation in the context of the NCS-1/Ric-8A complex.

(A) Co-IP protein-protein interaction assay of hNCS-1 and V5-tagged full-length hRic-8A wild-type (WT) (hRic-8A-WT) and a non-phosphorylatable mutant (Ric-8A-P-Mut; S436A, T441A) in HEK293 cells. (B)…

Figure 5—figure supplement 1
Analysis of phosphorylated rRic-8A-452 by mass spectrometry.

MS/MS fragmentation spectra (top) and Mascot phospho-site assignment confidence (bottom) of the two phosphorylated peptides (A and B) detected at S435. Red and yellow signals correspond to the …

Figure 6 with 2 supplements
Effect of full-length NCS-1 on guanine nucleotide exchange factor (GEF) activity of rRic-8A-491.

(A) GTP binding rates were measured by following the increase in rΔN31Gαi1 tryptophan fluorescence following addition of 10 µM GTPγS. Prior to GTPγS addition, rΔN31Gαi1 (1 µM final concentration) …

Figure 6—figure supplement 1
GTPγS binding progress curves.

Representative traces of progress curves in determining nucleotide exchange rates shown in Figure 6. Change in fluorescence intensity is measured at excitation/emission = 295 nm/345 nm, which is …

Figure 6—figure supplement 2
GTP binding rates vs CaCl2 concentration. GTP binding rates of rΔN31Gαi1 vs CaCl2 concentration, after subtraction of the intrinsic rate at 0 µM CaCl2 (black spheres).

GTP binding rates of His-NCS-1/rRic-8A-491 plotted vs CaCl2 concentration after subtraction of intrinsic binding rates of rΔN31Gαi1 at each corresponding CaCl2 concentration (red triangles). In all …

Structural reorganization of Ric-8A for NCS-1 recognition.

(A) The structure of the rRic-8A/G⍺i1 complex (PDB: 6UKT, McClelland et al., 2020). Electrostatic potential surface representation of ARM-HEAT domain (repeats 1–8). The repeat 9 is shown as ribbons. …

Schematic representation of the mechanism of Ric-8A activation regulated by NCS-1.

Step 1: At low Ca2+ concentrations NCS-1 interacts with unphosphorylated Ric-8A (uRic-8A), at the plasma membrane. NCS-1 protects Ric-8A from phosphorylation or Gα subunit binding. Ric-8A ARM-HEAT …

Author response image 1
Comparison of 2D averages and cryo-EM map of the previously presented model and the currently improved one.

(Top left) 2D averages from the previous and current models, generated with the final particles after 3D classification. The old and new cryo-EM maps with docked PDBs from a front (top right), side …

Videos

Video 1
Morph movie explaining the structural rearrangement of Ric-8A HEAT repeat 9 for NCS-1 recognition.

Ric-8A residues 402–429 are shown starting at the Gα-bound and ending at the NCS-1-bound conformations. The view is the same as that in Figure 7A. Side chains are displayed in stick mode. While in …

Tables

Table 1
Diffraction data collection and refinement statistics of hNCS-1/Ric-8A-P crystals.
Data collectionStructure 1Structure 2Structure 3
PDB code8ALH8AHY8ALM
PeptideP2P3P3
 Ions in solutionMg2+, Ca2+, Na+Mg2+, Ca2+, Na+Ca2+, Na+
 Space groupP41212P41212P41212
 Cell dimensions
  a, b, c (Å)56.86, 56.86, 134.6156.64, 56.64, 135.3056.64, 56.64, 134.53
  α, β, γ (°)90.00, 90.00, 90.0090.00, 90.00, 90.0090.00, 90.00, 90.00
 Resolution range (Å)52.38–1.86 (1.93-1.86)*
[a*, b*=1.846, c*=1.917]
52.24–1.70 (1.79-1.70)*
[a*, b*=1.681, c*=1.891]
52.20–1.85 (1.94-1.85)*
[a*, b*=1.854, c*=1.920]
 Rpim0.044 (0.803)0.036 (0.659)0.028 (0.616)
 CC1/20.998 (0.445)0.997 (0.551)0.999 (0.467)
 I/σI16.8 (1.2)13.5 (1.4)15.2 (1.3)
 Completeness
  Spherical (%)92.7 (41)88.0 (34.1)91.2 (36.1)
  Ellipsoidal (%)94.9 (51.5)95.9 (65.4)94.0 (45.7)
 Wilson B-factor31.1226.9037.80
 Multiplicity25.2 (26.5)25.5 (27.7)8.7 (9.8)
Refinement
 Resolution (Å)52.38–1.8652.24–1.7052.20–1.85
 No. reflections180292200817665
 Rwork/Rfree19.58/23.13
(26.31/28.49)
18.64/20.76
(34.65/45.00)
20.98/25.25
(36.89/46.21)
Asymetric unit content
 No. atoms345434033374
  Protein (no. residues)171171171
  Peptide (no. residues)282828
  PEG/GOL3/12/12/2
  Ca2+/Cl-/Mg2+/Na+ ions2/1/1/12/1/1/12/1/0/2
  Water molecules141144116
 B-factor (Å)231.2727.2837.18
 R.m.s. deviations protein
  Bond lengths (Å)0.440.360.50
  Bond angles (°)0.630.560.65
 R.m.s. deviations peptide
  Bond lengths (Å)0.450.570.33
  Bond angles (°)0.700.630.61
  1. *

    Values in parenthesis are for highest resolution shell.

Table 2
Residues mutated to alanine to validate the NCS-1/Ric-8A PPI interface.
ResiduePosition and interacting residues
NCS-1 D37Upper part of the crevice. Interacts with Ric-8A R429, which is located at the C-terminal end of R2 helix
NCS-1 Y52Middle of the crevice. Recognizes Ric-8A L419, which is found at the middle of R2 helix
NCS-1 R148Bottom of the crevice. Interacts with Ric-8A K408 (N-terminus of R1 helix) and Ric-8A T410 (R1-R2 loop)
NCS-1 R151Bottom of the crevice. Interacts with Ric-8A K408 (N-terminus of R1 helix) and Ric-8A Y412 (R1-R2 loop, water-mediated H-bond)
Ric-8A T410, Y412, N414R1-R2 loop. Mediate several water-mediated H-bonds and van der Waals contacts with the bottom surface of NCS-1 crevice
NCS-1 W30AUpper part of the cavity. Important in the recognition of R2 helix. Establish van der Waals interactions with residues such as Ric-8A L424 and M425
Ric-8A L424 and M425C-terminal part of helix R2. Interact with NCS-1 W30 and the hydrophobic environment that surrounds these residues
Table 3
The Ca2+-dependent affinity of full-length NCS-1 for Ric-8A-P3 peptide.

Calculated apparent Kd and standard error of the mean (SEM) using biolayer interferometry. Three independent experiments were performed at each [Ca2+].

[Ca2+] (nM)
0250375425
Kd (μM)14034438198620
SEM29141816310
Table 4
Thermodynamic parameters of Ca2+ binding to full-length hNCS-1 in the presence of K+ or Na+.
C (150 mM)Kd1 (nM)ΔH1 (kcal/mol)Kd2 (nM)ΔH2 (kcal/mol)Kd3 (nM)ΔH3 (kcal/mol)
Na+265±6–7.7±0.1758±163.0±0.1379±17–9.1±0.3
K+165.6±0.3–7.66±0.01362.3±0.61.00±0.01253±1–9.44±0.01
  1. Subscripts 1, 2, and 3 correspond to sites 1, 2, and 3, respectively.

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Escherichia coli)BL21*InvitrogenCat # C601003
Strain, strain background (E. coli)BL21(DE3) pLysSNovagenCat # 70236
Strain, strain background (E. coli)Rosetta2 pLysSNovagenCat # 71403
Strain, strain background (E. coli)WK6 cellsMcClelland et al., 2020Cat # 47078
Strain, strain background (E. coli)BL21 CodonPlus (DE3) RIPLMcClelland et al., 2020Cat # 230280
Cell line (human)HEK293ATCCCat # CRL-1573
AntibodyMouse monoclonal anti-V5InvitrogenCat # R960-251:5000
AntibodyRabbit polyclonal anti-NCS-1Cell SignalingCat # 8237S1:2000 in WB 1:500 in IP
AntibodyAnti-mouse antibody TrueBlot secondaryRocklandCat # 18-8817-301:5000
Recombinant DNA reagentHuman NCS-1 (full-length) in pETDuet vectorCanal-Martín et al., 2019N/A
Recombinant DNA reagentHuman NCS-1ΔH10 in pETDuet vectorThis workN/AStop codon after residue P177 for NCS-1ΔH10 construct
Recombinant DNA reagentHuman His(6)-NCS-1 in pET28a+vectorThis workN/AHis-tagged NCS-1 version in pET28a+ vector
Recombinant DNA reagentHuman His(6)-NCS-1 (full-length) in pETDuet vectorThis workN/AHis-tagged NCS-1 version in pETDuet vector
Recombinant DNA reagentRat His(6)-Ric-8A(1-452) in pET28a vectorThomas et al., 2011N/A
Recombinant DNA reagentRat His(6)-Ric-8A(1-423) in pET28a vectorThis workN/ARic-8A(1-423) truncated version of Rat His(6)-Ric-8A(1-452) in pET28a vector
Recombinant DNA reagentRat His(6)-Ric-8A(1-432) in pET28a vectorThis workN/ARic-8A(1-432) truncated version of Rat His(6)-Ric-8A(1-452) in pET28a vector
Recombinant DNA reagentRat His(6)-Ric-8A(1-491) in pET28a vectorThomas et al., 2011N/A
Recombinant DNA reagentRat GST-ΔN31Gα in a pDest15 vectorMcClelland et al., 2020N/A
Recombinant DNA reagentHuman Ric-8A deletion construct ending at G424 (hRic-8A-424) in nV5-pCDNA3.1 plasmidThis workN/AhRic-8A-G424 construct version of human Ric-8A in nV5-pCDNA3.1 plasmid
Recombinant DNA reagentHuman Ric-8A deletion construct ending at G433 (hRic-8A-433) in nV5-pCDNA3.1 plasmidThis workN/AhRic-8A-G433 construct version of human Ric-8A in nV5-pCDNA3.1 plasmid
Recombinant DNA reagentHuman Ric-8A full-length mutant (S436A, T441A) in nV5-pCDNA3.1 plasmidThis workN/APhosphorylation mutant version
Recombinant DNA reagentHuman Ric-8A in nV5-pCDNA3.1 plasmidMansilla et al., 2017N/A
Recombinant DNA reagentHuman Ric-8A mutant (T411A, Y413A, N415A) in nV5-pCDNA3.1 plasmidThis workN/AT411A, Y413A, N415A mutant version of human Ric-8A in nV5-pCDNA3.1 plasmid
Recombinant DNA reagentHuman Ric-8A mutant (L425A, M426A) in nV5-pCDNA3.1 plasmidThis workN/AL425A, M426A, mutant version of human Ric-8A in nV5-pCDNA3.1 plasmid
Recombinant DNA reagentHuman NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmidMansilla et al., 2017N/A
Recombinant DNA reagentHuman NCS-1 mutant (D37A, Y52A) in pCDNA3.1 plasmidThis workN/AD37A, Y52A mutant version of human NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmid
Recombinant DNA reagentHuman NCS-1 mutant (R148A, R151A) in pCDNA3.1 plasmidThis workN/AR148A, R151A mutant version of human NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmid
Recombinant DNA reagentHuman NCS-1 mutant (D37A, R148A, R151A) in pCDNA3.1 plasmidThis workN/AD37A, R148A mutant version of human NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmid
Recombinant DNA reagentHuman NCS-1 mutant (D37A, Y52A, R148A, R151A) in pCDNA3.1 plasmidThis workN/AD37A, Y52A, R148A, R151A mutant version of human NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmid
Recombinant DNA reagentHuman NCS-1 mutant (W30A) in pCDNA3.1 plasmidThis workN/AW30 mutant version of human NCS-1 in pCDNA3.1 plasmid in pCDNA3.1 plasmid
Peptide, recombinant proteinCasein kinase IINew England BiolabsCat # P6010L
Peptide, recombinant proteinRic-8A P1 peptide (400-423)GenicBioN/A
Peptide, recombinant proteinRic-8A P2 peptide (400-429)GenicBioN/A
Peptide, recombinant proteinRic-8A P3 peptide (400-432)GenicBioN/A
Chemical compound, drugATPNew England BiolabsCat # P0756S
Chemical compound, drugWater for UHPLC-MS LiChrosolvMerckCat # 1037282002
Chemical compound, drugGuanosine 5’-[g-thio]triphosphateSigmaCat # G8634-10MG
Software, algorithmImageJSchneider et al., 2012https://imagej.net/software/imagej/
Software, algorithmGraphPad PrismGraphPad Software, Inc, USA; GraphPad Prism, 2023https://www.graphpad.com/features
Software, algorithmAutoPROCVonrhein et al., 2011https://www.globalphasing.com/autoproc/manual/autoPROC1.htmlv1.1.7
Software, algorithmPhaserMcCoy et al., 2007https://www.ccp4.ac.uk/html/phaser.htmlv2.7.0
Software, algorithmPhenixAdams et al., 2010https://www.phenix-online.org/v1.19.2_4158
Software, algorithmCOOTEmsley and Cowtan, 2004https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/0.9.8
Software, algorithmMolprobityWilliams et al., 2018http://molprobity.biochem.duke.edu/v4.5.2
Software, algorithmCCP4Winn et al., 2011https://www.ccp4.ac.uk/v8.0
Software, algorithmPISA ServerKrissinel and Henrick, 2007https://www.ebi.ac.uk/pdbe/pisa/1.48
Software, algorithmPyMolSchrödinger, 2015https://pymol.org/2/v1.8.6.0
Software, algorithmTycho NT.6 softwareNanoTemperhttps://nanotempertech.comTycho
Software, algorithmMascot ServerMatrix Sciencehttps://www.matrixscience.com/
Software, algorithmKaleidaGraph Data Analysis ProgramSynergy Softwarehttps://www.synergy.com/
Software, algorithmAFFINImeterAFFINImeterhttps://www.affinimeter.com
OtherAtomic Coordinates and Structure Factors NCS-1/Ric-8A-P2 complexPDBStructure 18ALH
OtherAtomic Coordinates and Structure Factors NCS-1/Ric-8A-P3 complexPDBStructure 28AHY
OtherAtomic Coordinates and Structure Factors NCS-1/Ric-8A-P3 complexPDBStructure 38ALM
OtherHi Trap Phenyl FF hydrophobic columnCytiva17519301Purification column
OtherAnion exchange HP Q columnCytiva17115301Purification column
OtherNickel-affinity column, HisTrap FFCytiva17525501Purification column
OtherNi2+-chelated Sepharose HP beadsCytiva17526801Purification column
OtherHiLoad 16/600 Superdex 200 pgCytiva28989335Purification column
OtherSource 15Q columnCytiva17094701Purification column
OtherSuperdex 200 HR 10/300 columnCytivaGE17-5175-01Purification column
OtherTycho NT.6 instrumentNanoTemperhttps://nanotempertech.com/tycho/Nano-DSF equipment
OtherTycho capillariesNanoTemperCat # TY-C001Nano-DSF capillaries
OtherVP-ITC microcalorimeterGE Healthcarehttps://www.malvernpanalytical.com/en/products/product-range/microcal-rangeITC equipment
OtherBLItz systemForteBioBLItz from ForteBioBLI equipment
OtherNi-NTA biosensorsSartoriusCA89413-836BLI biosensors
OtherProtein-G-SepharoseSigma-AldrichCAT # P3296-1MLAntibodies purification

Additional files

Download links