The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid

  1. Celine Bellegarda  Is a corresponding author
  2. Guillaume Zavard
  3. Lionel Moisan
  4. Françoise Brochard-Wyart
  5. Jean-François Joanny
  6. Ryan S Gray
  7. Yasmine Cantaut-Belarif
  8. Claire Wyart  Is a corresponding author
  1. Paris Brain Institute, Sorbonne Université, France
  2. Université Paris Cité, CNRS, MAP5, France
  3. Institut Curie, CNRS UMR168, France
  4. The University of Texas at Austin, United States
  5. Paris Brain Institute (ICM), Sorbonne Université, France

Abstract

The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber’s cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.

Data availability

All code are accessible on GitHub and processed data from imaging and ablation experiments are available here:https://doi.org/10.5061/dryad.573n5tbc2

The following data sets were generated

Article and author information

Author details

  1. Celine Bellegarda

    Paris Brain Institute, Sorbonne Université, Paris, France
    For correspondence
    cbellegarda@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4394-295X
  2. Guillaume Zavard

    Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8948-4387
  3. Lionel Moisan

    Université Paris Cité, CNRS, MAP5, Paris, France
    Competing interests
    No competing interests declared.
  4. Françoise Brochard-Wyart

    Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
  5. Jean-François Joanny

    Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6966-3222
  6. Ryan S Gray

    Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9668-6497
  7. Yasmine Cantaut-Belarif

    Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  8. Claire Wyart

    Paris Brain Institute (ICM), Sorbonne Université, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Human Frontier Science Program (2017/RG0063)

  • Claire Wyart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal handling and procedures were validated by the Paris Brain Institute (ICM) and the French National Ethics Committee (ComiteNational de Reflexion Ethique sur l'Experimentation Animale; APAFIS # 2018071217081175) in agreement with EU legislation. All experimentswere performed on Danio rerio 3 days old larvae of AB Larvae raised in the same conditions.Experiments were performed at RT on 3 days post fertilization (dpf) larvae based on the protocol of each experiment.

Copyright

© 2023, Bellegarda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 812
    views
  • 156
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Celine Bellegarda
  2. Guillaume Zavard
  3. Lionel Moisan
  4. Françoise Brochard-Wyart
  5. Jean-François Joanny
  6. Ryan S Gray
  7. Yasmine Cantaut-Belarif
  8. Claire Wyart
(2023)
The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid
eLife 12:e86175.
https://doi.org/10.7554/eLife.86175

Share this article

https://doi.org/10.7554/eLife.86175

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.

    1. Physics of Living Systems
    Sina Heydari, Haotian Hang, Eva Kanso
    Research Article

    The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.