The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid

  1. Celine Bellegarda
  2. Guillaume Zavard
  3. Lionel Moisan
  4. Françoise Brochard-Wyart
  5. Jean-François Joanny
  6. Ryan S Gray
  7. Yasmine Cantaut-Belarif
  8. Claire Wyart  Is a corresponding author
  1. Paris Brain Institute, Sorbonne Université, France
  2. Université Paris Cité, CNRS, MAP5, France
  3. Institut Curie, CNRS UMR168, France
  4. The University of Texas at Austin, United States
  5. Paris Brain Institute (ICM), Sorbonne Université, France

Abstract

The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber’s cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.

Data availability

All code are accessible on GitHub and processed data from imaging and ablation experiments are available here:https://doi.org/10.5061/dryad.573n5tbc2

The following data sets were generated

Article and author information

Author details

  1. Celine Bellegarda

    Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4394-295X
  2. Guillaume Zavard

    Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8948-4387
  3. Lionel Moisan

    Université Paris Cité, CNRS, MAP5, Paris, France
    Competing interests
    No competing interests declared.
  4. Françoise Brochard-Wyart

    Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
  5. Jean-François Joanny

    Institut Curie, CNRS UMR168, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6966-3222
  6. Ryan S Gray

    Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9668-6497
  7. Yasmine Cantaut-Belarif

    Paris Brain Institute, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  8. Claire Wyart

    Paris Brain Institute (ICM), Sorbonne Université, Paris, France
    For correspondence
    claire.wyart@icm-institute.org
    Competing interests
    Claire Wyart, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1668-4975

Funding

Human Frontier Science Program (2017/RG0063)

  • Claire Wyart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal handling and procedures were validated by the Paris Brain Institute (ICM) and the French National Ethics Committee (ComiteNational de Reflexion Ethique sur l'Experimentation Animale; APAFIS # 2018071217081175) in agreement with EU legislation. All experimentswere performed on Danio rerio 3 days old larvae of AB Larvae raised in the same conditions.Experiments were performed at RT on 3 days post fertilization (dpf) larvae based on the protocol of each experiment.

Copyright

© 2023, Bellegarda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 889
    views
  • 171
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Celine Bellegarda
  2. Guillaume Zavard
  3. Lionel Moisan
  4. Françoise Brochard-Wyart
  5. Jean-François Joanny
  6. Ryan S Gray
  7. Yasmine Cantaut-Belarif
  8. Claire Wyart
(2023)
The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid
eLife 12:e86175.
https://doi.org/10.7554/eLife.86175

Share this article

https://doi.org/10.7554/eLife.86175

Further reading

    1. Physics of Living Systems
    Xiaowen Chen, Maciej Winiarksi ... Aleksandra M Walczak
    Research Article

    In social behavior research, the focus often remains on animal dyads, limiting the understanding of complex interactions. Recent trends favor naturalistic setups, offering unique insights into intricate social behaviors. Social behavior stems from chance, individual preferences, and group dynamics, necessitating high-resolution quantitative measurements and statistical modeling. This study leverages the Eco-HAB system, an automated experimental setup that employs radiofrequency identification tracking to observe naturally formed mouse cohorts in a controlled yet naturalistic setting, and uses statistical inference models to decipher rules governing the collective dynamics of groups of 10–15 individuals. Applying maximum entropy models on the coarse-grained co-localization patterns of mice unveils social rules in mouse hordes, quantifying sociability through pairwise interactions within groups, the impact of individual versus social preferences, and the effects of considering interaction structures among three animals instead of two. Reproducing co-localization patterns of individual mice reveals stability over time, with the statistics of the inferred interaction strength capturing social structure. By separating interactions from individual preferences, the study demonstrates that altering neuronal plasticity in the prelimbic cortex – the brain structure crucial for sociability – does not eliminate signatures of social interactions, but makes the transmission of social information between mice more challenging. The study demonstrates how the joint probability distribution of the mice positions can be used to quantify sociability.

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.