Death by a thousand cuts through kinase inhibitor combinations that maximize selectivity and enable rational multitargeting

  1. Ian R Outhwaite
  2. Sukrit Singh
  3. Benedict-Tilman Berger
  4. Stefan Knapp
  5. John D Chodera
  6. Markus A Seeliger  Is a corresponding author
  1. Stony Brook University, United States
  2. Memorial Sloan Kettering Cancer Center, United States
  3. Goethe University Frankfurt, Germany

Abstract

Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicates the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems. Current efforts focus on the development of inhibitors with improved selectivity. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target effects. We develop a multicompound-multitarget scoring (MMS) method that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables optimization of inhibitor combinations for multiple on-targets. Using MMS with published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases with better selectivity than the most selective single inhibitor and validate the predicted effect and selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances selectivity in rational multitargeting applications. The MMS framework is generalizable to other non-kinase biological targets where compound selectivity is a challenge and diverse compound libraries are available.

Data availability

Instructions to run MMS, code, datasets, and MMS results are available at: https://github.com/iouthwaite/inhibitor_combinations

Article and author information

Author details

  1. Ian R Outhwaite

    Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2037-3261
  2. Sukrit Singh

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1914-4955
  3. Benedict-Tilman Berger

    Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    Benedict-Tilman Berger, is the CEO and a shareholder of CELLinib GmbH, Frankfurt, Germany..
  4. Stefan Knapp

    Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5995-6494
  5. John D Chodera

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    John D Chodera, is a current member of the Scientific Advisory Boards of OpenEye Scientific Software, Interline Therapeutics, and Redesign Science. The Chodera laboratory receives or has received funding from the National Institute of Health, the National Science Foundation, the Parker Institute for Cancer Immunotherapy, Relay Therapeutics, Entasis Therapeutics, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir Biotechnology, XtalPi, Interline Therapeutics, and the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, Cycle for Survival, a Louis V. Gerstner Young Investigator Award, and the Sloan Kettering Institute. A complete funding history for the Chodera lab can be found at http://choderalab.org/funding..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0542-119X
  6. Markus A Seeliger

    Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States
    For correspondence
    markus.seeliger@stonybrook.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0990-1756

Funding

National Institutes of Health (R35GM119437)

  • Markus A Seeliger

National Institutes of Health (T32GM136572)

  • Ian R Outhwaite

National Institutes of Health (R01GM121505)

  • John D Chodera

Damon Runyon Cancer Research Foundation (DRQ-14-22)

  • Sukrit Singh

National Institutes of Health (T32GM008444)

  • Ian R Outhwaite

Structural Genomics Consortium

  • Stefan Knapp

German Translational Cancer Network

  • Stefan Knapp

Deutsche Forschungsgemeinschaft (1399)

  • Benedict-Tilman Berger
  • Stefan Knapp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Outhwaite et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,889
    views
  • 265
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian R Outhwaite
  2. Sukrit Singh
  3. Benedict-Tilman Berger
  4. Stefan Knapp
  5. John D Chodera
  6. Markus A Seeliger
(2023)
Death by a thousand cuts through kinase inhibitor combinations that maximize selectivity and enable rational multitargeting
eLife 12:e86189.
https://doi.org/10.7554/eLife.86189

Share this article

https://doi.org/10.7554/eLife.86189

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.