VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: a population study

  1. Szczepan Wiecha  Is a corresponding author
  2. Przemysław Seweryn Kasiak
  3. Piotr Szwed
  4. Tomasz Kowalski
  5. Igor Cieśliński
  6. Marek Postuła
  7. Andrzej Klusiewicz
  1. Jozef Pilsudski University of Physical Education in Warsaw, Poland
  2. Medical University of Warsaw, Poland
  3. Institute of Sport-National Research Institute, Poland

Abstract

Backround: Oxygen uptake (VO2) is one of the most important measures of fitness and critical vital sign. Cardiopulmonary exercise testing (CPET) is a valuable method of assessing fitness in sport and clinical settings. There is a lack of large studies on athletic populations to predict VO2max using somatic or submaximal CPET variables. Thus, this study aimed to: (1) derive prediction models for maximal VO2 (VO2max) based on submaximal exercise variables at anaerobic threshold (AT) or respiratory compensation point (RCP) or only somatic and (2) internally validate provided equations.

Methods: 4424 male endurance athletes (EA) underwent maximal symptom-limited CPET on a treadmill (n=3330) or cycle ergometer (n=1094). The cohort was randomly divided between: variables selection (nrunners=1998; ncyclist=656), model building (nrunners=666; ncyclist=219) and validation (nrunners=666; ncyclist=219). Random Forest was used to select the most significant variables. Models were derived and internally validated with Multiple Linear Regression.

Results: Runners were 36.24±8.45 yrs.; BMI=23.94±2.43 kg·m−2; VO2max=53.81±6.67 mL·min−1·kg−1. Cyclists were 37.33±9.13 yr.; BMI=24.34±2.63 kg·m−2; VO2max=51.74±7.99 mL·min−1·kg−1. VO2 at AT and RCP were the most contributing variables to exercise equations. Body mass and body fat had the highest impact on the somatic equation. Model performance for VO2max based on variables at AT was R2=0.81, at RCP was R2=0.91, at AT&RCP was R2=0.91 and for somatic-only was R2=0.43.

Conclusions: Derived prediction models were highly accurate and fairly replicable. Formulae allow for precise estimation of VO2max based on submaximal exercise performance or somatic variables. Presented models are applicable for sport and clinical settling. They are a valuable supplementary method for fitness practitioners to adjust individualised training recommendations.

Funding: No external funding was received for this work.

Data availability

All data generated or analysed during this study are included in the manuscript.

Article and author information

Author details

  1. Szczepan Wiecha

    Department of Physical Education and Health, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
    For correspondence
    szczepan.wiecha@awf.edu.pl
    Competing interests
    Szczepan Wiecha, received payment for leading CPET workshops at IX Małopolskich Warsztatach Niewydolności Serca. The author has no other competing interest to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9458-557X
  2. Przemysław Seweryn Kasiak

    3rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0303-6135
  3. Piotr Szwed

    Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  4. Tomasz Kowalski

    Institute of Sport-National Research Institute, Warsaw, Poland
    Competing interests
    Tomasz Kowalski, has received funding from the Institute of Sport - National Research Institute. The author has received consulting fees for regular coaching and consulting work with private clients, Polish Triathlon Federation and The Triathlon Squad professional triathlon team. The author has no other competing interests to declare..
  5. Igor Cieśliński

    Department of Physical Education and Health, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  6. Marek Postuła

    Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.
  7. Andrzej Klusiewicz

    Department of Physical Education and Health, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
    Competing interests
    No competing interests declared.

Funding

No external funding was received for this work

Ethics

Human subjects: The Institutional Review Board of the Bioethical Committee at the Medical University of Warsaw (AKBE/32/2021) has approved the study protocol. The regulations of the Declaration of Helsinki were met during all parts of the study. Each subject delivered written consent to undergo CPET and participate in the study

Copyright

© 2023, Wiecha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,418
    views
  • 191
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Szczepan Wiecha
  2. Przemysław Seweryn Kasiak
  3. Piotr Szwed
  4. Tomasz Kowalski
  5. Igor Cieśliński
  6. Marek Postuła
  7. Andrzej Klusiewicz
(2023)
VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: a population study
eLife 12:e86291.
https://doi.org/10.7554/eLife.86291

Share this article

https://doi.org/10.7554/eLife.86291

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.