Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling

  1. Sachin Sharma
  2. Russell Littman
  3. John D Tompkins
  4. Douglas Arneson
  5. Jaime Contreras
  6. Al-Hassan Dajani
  7. Kaitlyn Ang
  8. Amit Tsanhani
  9. Xin Sun
  10. Patrick Y Jay
  11. Herbert Herzog
  12. Xia Yang
  13. Olujimi A Ajijola  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. University of California, San Francisco, United States
  3. University of California, San Diego, United States
  4. Alnylam Pharmaceuticals, United States
  5. Garvan Institute of Medical Research, Australia

Abstract

The cell bodies of postganglionic sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), alongside neurons innervating other organs and tissues. Whether cardiac-innervating stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other tissues is not known. To identify and resolve the transcriptomic profiles of SGNs innervating the heart we leveraged retrograde tracing techniques using adeno-associated virus (AAV) expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing. We investigated electrophysiologic, morphologic, and physiologic roles for subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes innervate the heart. These three subtypes stratify into two subpopulations; high (NA1a) and low (NA1b and NA1c) neuropeptide-Y (NPY) -expressing cells, exhibit distinct morphological, neurochemical, and electrophysiologic characteristics. In physiologic studies in transgenic mouse models modulating NPY signaling, we identified differential control of cardiac responses by these two subpopulations to high and low stress states. These findings provide novel insights into the unique properties of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies to target specific neuronal subtypes for sympathetic blockade in cardiac disease.

Data availability

Data related to single-cell RNA seq analysis generated from this manuscript are available from the GEO database (GSE231924)

The following data sets were generated

Article and author information

Author details

  1. Sachin Sharma

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6776-1061
  2. Russell Littman

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. John D Tompkins

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9496-7930
  4. Douglas Arneson

    Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Jaime Contreras

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Al-Hassan Dajani

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  7. Kaitlyn Ang

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Amit Tsanhani

    Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Xin Sun

    Department of Pediatrics, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8387-4966
  10. Patrick Y Jay

    Alnylam Pharmaceuticals, Cambridge, United States
    Competing interests
    Patrick Y Jay, is affiliated with Alnylam Pharmaceuticals..
  11. Herbert Herzog

    Neuroscience Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1713-1029
  12. Xia Yang

    Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  13. Olujimi A Ajijola

    Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    OAjijola@mednet.ucla.edu
    Competing interests
    Olujimi A Ajijola, is a co-founder of NeuCures Inc.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6197-7593

Funding

NIH Office of the Director (DP2HL142045)

  • Olujimi A Ajijola

NHLBI Division of Intramural Research (R01HL162717)

  • Olujimi A Ajijola

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher L-H Huang, University of Cambridge, United Kingdom

Ethics

Animal experimentation: Animal experiments complied with institutional guidelines and ethical regulations, and the study protocol was approved by the UCLA institutional Animal Care and Use Committee. (protocol number: 18-048).

Version history

  1. Preprint posted: January 19, 2023 (view preprint)
  2. Received: January 19, 2023
  3. Accepted: April 4, 2023
  4. Accepted Manuscript published: May 10, 2023 (version 1)
  5. Version of Record published: May 25, 2023 (version 2)

Copyright

© 2023, Sharma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,297
    Page views
  • 205
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sachin Sharma
  2. Russell Littman
  3. John D Tompkins
  4. Douglas Arneson
  5. Jaime Contreras
  6. Al-Hassan Dajani
  7. Kaitlyn Ang
  8. Amit Tsanhani
  9. Xin Sun
  10. Patrick Y Jay
  11. Herbert Herzog
  12. Xia Yang
  13. Olujimi A Ajijola
(2023)
Tiered sympathetic control of cardiac function revealed by viral tracing and single cell transcriptome profiling
eLife 12:e86295.
https://doi.org/10.7554/eLife.86295

Share this article

https://doi.org/10.7554/eLife.86295

Further reading

    1. Medicine
    Jinjing Chen, Ruoyu Wang ... Jongsook Kemper
    Research Article

    The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.

    1. Cell Biology
    2. Medicine
    Chun Wang, Khushpreet Kaur ... Gabriel Mbalaviele
    Research Article

    Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.