Two conserved vocal central pattern generators broadly tuned for fast and slow rates generate species-specific vocalizations in Xenopus clawed frogs

  1. Ayako Yamaguchi  Is a corresponding author
  2. Manon Peltier
  1. University of Utah, United States

Abstract

Across phyla, species-specific vocalizations are used by males to attract females. Functional analyses of the neural circuitry underlying behavior have been challenging, particularly in vertebrates. However, using an ex vivo brain preparation that produces fictive vocalizations, we previously identified anatomically distinct fast and slow central pattern generators (CPGs) that drive the fast and slow clicks of male courtship calls in male African clawed frogs, Xenopus laevis. To gain insight into the evolution of neural circuits underlying species-specific courtship calls, we extended this approach to four additional species, X. amieti, X. cliivi, X. petersii, and X. tropicalis, by developing ex vivo brain preparation from which fictive vocalizations are elicited in response to a chemical or electrical stimulus. We found that even though the courtship calls of different Xenopus species vary in their click rates and duration, the CPGs used to generate clicks are conserved across species. The fast CPGs found in male X. laevis, which critically rely on reciprocal connections between the parabrachial nucleus and the nucleus ambiguus, are conserved among species that produce fast clicks. Similarly, the slow CPGs found in the caudal brainstem of male X. laevis are shared among species that produce slow clicks. In addition, our results suggest that testosterone plays a role in organizing fast CPGs in fast-click species, but it does not appear to have the same effect in slow-click species. Moreover, we demonstrate that, unlike other vestigial neural circuits that remain latent, fast CPGs are not inherited by all species. Instead, they are possessed only by the species that produce fast clicks. The results suggest that species-specific calls of the genus Xenopus have evolved by utilizing conserved slow and/or fast CPGs inherited by each species. Fast and slow CPGs are broadly tuned to generate fast or slow clicks, and the organization of the former appears to be regulated by testosterone in a species-specific manner.

Data availability

The data used to obtain the results of this article have been deposited on Dryad and can be viewed via https://doi.org/10.5061/dryad.2280gb5x3

The following data sets were generated

Article and author information

Author details

  1. Ayako Yamaguchi

    School of Biological Science, University of Utah, Salt Lake City, United States
    For correspondence
    a.yamaguchi@utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5653-1041
  2. Manon Peltier

    School of Biological Science, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (IOS 1934386)

  • Ayako Yamaguchi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendation in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. All the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#00001989) of the University of Utah. The protocol was approved by the Institutional Animal Care and Use Committee at the University of Utah and complied with National Institute of Health guidelines. All surgery was performed under tricaine methanesulfonate (MS-222) anesthesia, and every effort was made to minimize suffering.

Copyright

© 2023, Yamaguchi & Peltier

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 476
    views
  • 85
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ayako Yamaguchi
  2. Manon Peltier
(2023)
Two conserved vocal central pattern generators broadly tuned for fast and slow rates generate species-specific vocalizations in Xenopus clawed frogs
eLife 12:e86299.
https://doi.org/10.7554/eLife.86299

Share this article

https://doi.org/10.7554/eLife.86299

Further reading

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.