Gaze patterns and brain activations in humans and marmosets in the Frith-Happé theory-of-mind animation task

Abstract

Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to other individuals. This ability extends even to the attribution of mental states to animations featuring simple geometric shapes, such as the Frith-Happé animations in which two triangles move either purposelessly (Random condition), exhibit purely physical movement (Goal-directed condition), or move as if one triangle is reacting to the other triangle's mental states (ToM condition). While this capacity in humans has been thoroughly established, research on nonhuman primates has yielded inconsistent results. This study explored how marmosets (Callithrix jacchus), a highly social primate species, process Frith-Happé animations by examining gaze patterns and brain activations of marmosets and humans as they observed these animations. We revealed that both marmosets and humans exhibited longer fixations on one of the triangles in ToM animations, compared to other conditions. However, we did not observe the same pattern of longer overall fixation duration on the ToM animations in marmosets as identified in humans. Furthermore, our findings reveal that both species activated extensive and comparable brain networks when viewing ToM versus Random animations, suggesting that marmosets differentiate between these scenarios similarly to humans. While marmosets did not mimic human overall fixation patterns, their gaze behavior and neural activations indicate a distinction between ToM and non-ToM scenarios. This study expands our understanding of nonhuman primate cognitive abilities, shedding light on potential similarities and differences in ToM processing between marmosets and humans.

Data availability

All fMRI and eye tracking data generated and analysed as well as the scripts used have been deposited in Github and the link has been provided in the manuscript. Here the link: https://github.com/audreydureux/Theory-of-mind_Human_Marmosets_Paper

Article and author information

Author details

  1. Audrey Dureux

    Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Canada
    For correspondence
    audrey.dureux@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1687-8347
  2. Alessandro Zanini

    Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Janahan Selvanayagam

    Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3708-8742
  4. Ravi S Menon

    Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Everling

    Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9714-9757

Funding

Canadian Institutes of Health Research (FRN 148365)

  • Stefan Everling

Canada First Research Excellence Fund

  • Stefan Everling

Natural Sciences and Engineering Research Council of Canada (Discovery grant)

  • Stefan Everling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Muireann Irish, University of Sydney, Australia

Ethics

Animal experimentation: All experimental methods described were performed in accordance with the guidelines of the Canadian Council of Animal Care policy and a protocol approved by the Animal Care Committee of the University of Western Ontario Council on Animal Care (#2021-111). Animals were monitoring during the acquisition sessions by a veterinary technician.

Human subjects: This study was approved by the Ethics Committee of the University of Western Ontario and subjects were informed about the experimental procedures and provided informed written consent.

Version history

  1. Preprint posted: January 18, 2023 (view preprint)
  2. Received: January 20, 2023
  3. Accepted: July 13, 2023
  4. Accepted Manuscript published: July 14, 2023 (version 1)
  5. Version of Record published: August 17, 2023 (version 2)
  6. Version of Record updated: October 4, 2023 (version 3)

Copyright

© 2023, Dureux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 765
    views
  • 116
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Audrey Dureux
  2. Alessandro Zanini
  3. Janahan Selvanayagam
  4. Ravi S Menon
  5. Stefan Everling
(2023)
Gaze patterns and brain activations in humans and marmosets in the Frith-Happé theory-of-mind animation task
eLife 12:e86327.
https://doi.org/10.7554/eLife.86327

Share this article

https://doi.org/10.7554/eLife.86327

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.