BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming

  1. Chaoming Wang
  2. Tianqiu Zhang
  3. Xiaoyu Chen
  4. Sichao He
  5. Shangyang Li
  6. Si Wu  Is a corresponding author
  1. Peking University, China
  2. Beijing Jiaotong University, China

Abstract

Elucidating the intricate neural mechanisms underlying brain functions requires integrative brain dynamics modeling. To facilitate this process, it is crucial to develop a general-purpose programming framework that allows users to freely define neural models across multiple scales, efficiently simulate, train, and analyze model dynamics, and conveniently incorporate new modeling approaches. In response to this need, we present BrainPy. BrainPy leverages the advanced just-in-time (JIT) compilation capabilities of JAX and XLA to provide a powerful infrastructure tailored for brain dynamics programming. It offers an integrated platform for building, simulating, training, and analyzing brain dynamics models. Models defined in BrainPy can be JIT compiled into binary instructions for various devices, including Central Processing Unit (CPU), Graphics Processing Unit (GPU), and Tensor Processing Unit (TPU), which ensures high running performance comparable to native C or CUDA. Additionally, BrainPy features an extensible architecture that allows for easy expansion of new infrastructure, utilities, and machine-learning approaches. This flexibility enables researchers to incorporate cutting-edge techniques and adapt the framework to their specific needs

Data availability

BrainPy is distributed via the pypi package index (https://pypi.org/project/brainpy/) and is publicly released on GitHub (https://github.com/brainpy/BrainPy/) under the license of GNU General Public License v3.0. Its documentation is hosted on the free documentation hosting platform Read the Docs (https://brainpy.readthedocs.io/). Rich examples and illustrations of BrainPy are publicly available at the website of https://brainpy-examples.readthedocs.io/. The source codes of these examples are available at https://github.com/brainpy/examples/. All the codes to reproduce the results in the paper can be found at the following GitHub repository: https://github.com/brainpy/brainpy-paper-reproducibility/.

The following previously published data sets were used

Article and author information

Author details

  1. Chaoming Wang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tianqiu Zhang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyu Chen

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Sichao He

    Beijing Jiaotong University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Shangyang Li

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Si Wu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    siwu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9650-6935

Funding

Peking University (2021ZD0200204)

  • Si Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,293
    views
  • 246
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaoming Wang
  2. Tianqiu Zhang
  3. Xiaoyu Chen
  4. Sichao He
  5. Shangyang Li
  6. Si Wu
(2023)
BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming
eLife 12:e86365.
https://doi.org/10.7554/eLife.86365

Share this article

https://doi.org/10.7554/eLife.86365

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.