Nicotinic acetylcholine receptor signaling maintains epithelial barrier integrity

  1. Nadja S Katheder
  2. Kristen C Browder
  3. Diana Chang
  4. Ann De Maziere
  5. Pekka Kujala
  6. Suzanne van Dijk
  7. Judith Klumperman
  8. Tzu-Chiao Lu
  9. Hongjie Li
  10. Zijuan Lai
  11. Dewakar Sangaraju
  12. Heinrich Jasper  Is a corresponding author
  1. Genentech, United States
  2. University Medical Center Utrecht, Netherlands
  3. Baylor College of Medicine, United States

Abstract

Disruption of epithelial barriers is a common disease manifestation in chronic degenerative diseases of the airways, lung and intestine. Extensive human genetic studies have identified risk loci in such diseases, including in chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases (IBD). The genes associated with these loci have not fully been determined, and functional characterization of such genes requires extensive studies in model organisms. Here, we report the results of a screen in Drosophila melanogaster that allowed for rapid identification, validation and prioritization of COPD risk genes that were selected based on risk loci identified in human genome-wide association studies (GWAS) studies. Using intestinal barrier dysfunction in flies as a readout, our results validate the impact of candidate gene perturbations on epithelial barrier function in 56% of the cases, resulting in a prioritized target gene list. We further report the functional characterization in flies of one family of these genes, encoding for nicotinic acetylcholine receptor subunits (nAchR). We find that nAchR signaling in enterocytes of the fly gut promotes epithelial barrier function and epithelial homeostasis by regulating the production of the peritrophic matrix. Our findings identify COPD associated genes critical for epithelial barrier maintenance, and provide insight into the role of epithelial nAchR signaling for homeostasis.

Data availability

Sequencing data has been deposited in GEO under accession code GSE236071.

The following data sets were generated

Article and author information

Author details

  1. Nadja S Katheder

    Regenerative Medicine, Genentech, South San Francisco, United States
    Competing interests
    Nadja S Katheder, is affiliated with Genentech. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0460-0938
  2. Kristen C Browder

    Regenerative Medicine, Genentech, South San Francisco, United States
    Competing interests
    Kristen C Browder, is affiliated with Genentech. The author has no financial interests to declare..
  3. Diana Chang

    Human Genetics, Genentech, South San Francisco, United States
    Competing interests
    Diana Chang, is affiliated with Genentech. The author has no financial interests to declare..
  4. Ann De Maziere

    Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8070-5104
  5. Pekka Kujala

    Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  6. Suzanne van Dijk

    Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  7. Judith Klumperman

    Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Tzu-Chiao Lu

    Huffington Center on Aging, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  9. Hongjie Li

    Huffington Center on Aging, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  10. Zijuan Lai

    Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
    Competing interests
    Zijuan Lai, is affiliated with Genentech. The author has no financial interests to declare..
  11. Dewakar Sangaraju

    Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
    Competing interests
    Dewakar Sangaraju, is affiliated with Genentech. The author has no financial interests to declare..
  12. Heinrich Jasper

    Regenerative Medicine, Genentech, South San Francisco, United States
    For correspondence
    jasperh@gene.com
    Competing interests
    Heinrich Jasper, is affiliated with Genentech. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6014-4343

Funding

Netherlands Organization for Scientific Research (184.034.014)

  • Judith Klumperman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno Lemaitre, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: January 23, 2023
  2. Preprint posted: February 10, 2023 (view preprint)
  3. Accepted: October 31, 2023
  4. Accepted Manuscript published: December 8, 2023 (version 1)
  5. Version of Record published: January 3, 2024 (version 2)

Copyright

© 2023, Katheder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 785
    views
  • 171
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadja S Katheder
  2. Kristen C Browder
  3. Diana Chang
  4. Ann De Maziere
  5. Pekka Kujala
  6. Suzanne van Dijk
  7. Judith Klumperman
  8. Tzu-Chiao Lu
  9. Hongjie Li
  10. Zijuan Lai
  11. Dewakar Sangaraju
  12. Heinrich Jasper
(2023)
Nicotinic acetylcholine receptor signaling maintains epithelial barrier integrity
eLife 12:e86381.
https://doi.org/10.7554/eLife.86381

Share this article

https://doi.org/10.7554/eLife.86381

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.