The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster

  1. Nora C Brown
  2. Benjamin Gordon
  3. Caitlin E McDonough-Goldstein
  4. Snigdha Misra
  5. Geoffrey D Findlay
  6. Andrew G Clark  Is a corresponding author
  7. Mariana Federica Wolfner  Is a corresponding author
  1. Cornell University, United States
  2. University of Vienna, Austria
  3. College of the Holy Cross, United States

Abstract

In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology and behavior. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Previous work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility in the ejaculate, though functional evidence in any species is lacking. Here, we used RNAi and CRISPR/Cas9 generated mutants to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes had no effect on fertility when mutated individually. Obp56g is expressed in the male's ejaculatory bulb, an important tissue in the reproductive tract that synthesizes components of the mating plug. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression only in species of the melanogaster and obscura groups, though conserved head expression in all species tested. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.

Data availability

All data generated or analyzed for this study are included in the manuscript, supporting files, or are available on Github. Source data files have been provided for Figure 1C, Figure 2B, Figure 4C, Figure 1-figure supplement 2B, Figure 1-figure supplement 3A & B, Figure 4-figure supplement 2, and Figure 6-figure supplement 1. All mating data, R code to analyze mating data, RNAseq data across species, and tree files/alignments for use in PAML are available on Github: https://github.com/WolfnerLab/Obps

The following previously published data sets were used
    1. Li H
    2. et al
    (2022) 10x stringent male reproductive gland
    Fly Cell Atlas, https://cloud.flycellatlas.org/index.php/s/rSgw2GGSqRkLHgM.

Article and author information

Author details

  1. Nora C Brown

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8567-1273
  2. Benjamin Gordon

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3856-0500
  3. Caitlin E McDonough-Goldstein

    Department of Evolutionary Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Snigdha Misra

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Geoffrey D Findlay

    Department of Biology, College of the Holy Cross, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8052-2017
  6. Andrew G Clark

    Department of Computational Biology, Cornell University, Ithaca, United States
    For correspondence
    ac347@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Mariana Federica Wolfner

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    For correspondence
    mfw5@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2701-9505

Funding

National Institutes of Health (HD059060)

  • Andrew G Clark

National Institutes of Health (HD059060)

  • Mariana Federica Wolfner

National Institutes of Health (F32GM097789)

  • Geoffrey D Findlay

National Science Foundation (2212972)

  • Geoffrey D Findlay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ilona C Grunwald Kadow, University of Bonn, Germany

Version history

  1. Received: January 24, 2023
  2. Preprint posted: February 7, 2023 (view preprint)
  3. Accepted: December 20, 2023
  4. Accepted Manuscript published: December 21, 2023 (version 1)
  5. Version of Record published: February 1, 2024 (version 2)

Copyright

© 2023, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 884
    views
  • 168
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nora C Brown
  2. Benjamin Gordon
  3. Caitlin E McDonough-Goldstein
  4. Snigdha Misra
  5. Geoffrey D Findlay
  6. Andrew G Clark
  7. Mariana Federica Wolfner
(2023)
The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster
eLife 12:e86409.
https://doi.org/10.7554/eLife.86409

Share this article

https://doi.org/10.7554/eLife.86409

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.

    1. Evolutionary Biology
    Case Vincent Miller, Jen A Bright ... Michael Pittman
    Research Article

    Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.