Humans parsimoniously represent auditory sequences by pruning and completing the underlying network structure

Abstract

Successive auditory inputs are rarely independent, their relationships ranging from local transitions between elements to hierarchical and nested representations. In many situations, humans retrieve these dependencies even from limited datasets. However, this learning at multiple scale levels is poorly understood. Here we used the formalism proposed by network science to study the representation of local and higher-order structures and their interaction in auditory sequences. We show that human adults exhibited biases in their perception of local transitions between elements, which made them sensitive to high-order network structures such as communities. This behavior is consistent with the creation of a parsimonious simplified model from the evidence they receive, achieved by pruning and completing relationships between network elements. This observation suggests that the brain does not rely on exact memories but on a parsimonious representation of the world. Moreover, this bias can be analytically modeled by a memory/efficiency trade-off. This model correctly accounts for previous findings, including local transition probabilities as well as high-order network structures, unifying sequence learning across scales. We finally propose putative brain implementations of such bias.

Data availability

All Data and analysis are publicly available at https://osf.io/e8u7f/

The following data sets were generated

Article and author information

Author details

  1. Lucas Benjamin

    Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, Paris-Saclay, France
    For correspondence
    lucas.benjamin@cea.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9578-6039
  2. Fló Ana

    Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, Paris-Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3260-0559
  3. Fosca Al Roumi

    Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, Paris-Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9590-080X
  4. Ghislaine Dehaene-Lambertz

    Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, Paris-Saclay, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2221-9081

Funding

European Research Council (695710)

  • Ghislaine Dehaene-Lambertz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Donders Institute for Brain, Cognition and Behaviour, Netherlands

Ethics

Human subjects: All participants gave their informed consents for participation and publication and this research was approved by the Ethical research committee of Paris-Saclay University under the reference CER-Paris-Saclay-2019-063

Version history

  1. Preprint posted: May 19, 2022 (view preprint)
  2. Received: January 25, 2023
  3. Accepted: April 28, 2023
  4. Accepted Manuscript published: May 2, 2023 (version 1)
  5. Version of Record published: June 5, 2023 (version 2)

Copyright

© 2023, Benjamin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 733
    views
  • 122
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lucas Benjamin
  2. Fló Ana
  3. Fosca Al Roumi
  4. Ghislaine Dehaene-Lambertz
(2023)
Humans parsimoniously represent auditory sequences by pruning and completing the underlying network structure
eLife 12:e86430.
https://doi.org/10.7554/eLife.86430

Share this article

https://doi.org/10.7554/eLife.86430

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.