Maresin 1 repletion improves muscle regeneration after volumetric muscle loss

  1. Jesus A Castor-Macias
  2. Jacqueline A Larouche
  3. Emily C Wallace
  4. Bonnie D Spence
  5. Alec Eames
  6. Pamela Duran
  7. Benjamin A Yang
  8. Paula M Fraczek
  9. Carol A Davis
  10. Susan V Brooks
  11. Krishna Rao Maddipati
  12. James F Markworth
  13. Carlos A Aguilar  Is a corresponding author
  1. Department of Biomedical Engineering, University of Michigan, United States
  2. Biointerfaces Institute, University of Michigan, United States
  3. Department of Molecular & Integrative Physiology, University of Michigan, United States
  4. Department of Pathology, Lipidomics Core Facility, Wayne State University, United States
  5. Department of Animal Sciences, Purdue University, United States
  6. Program in Cellular and Molecular Biology, University of Michigan, United States
5 figures, 1 table and 2 additional files

Figures

Figure 1 with 1 supplement
In vivo comparison of degenerative and regenerative volumetric muscle loss (VML) injuries.

(A) Schematic of experiment, whereby young (3 mo) mice were administered 1-mm (administered to left leg) or 2-mm (administered to right leg) biopsy punches to their tibialis anterior muscle to create a VML injury. (B) Representative cross-sections stained with Picrosirius red isolated from healing (1-mm defect) and non-healing (2-mm defect) 7 d post injury (dpi) (n = 4–5 tissues from five mice per group). Scale = 200 μm. (C, D) Quantitation of images from (B) shows reductions in Picrosirius red for 1-mm defects compared to 2-mm defects at 7 dpi (C) and 14 dpi (D). Graphs show mean ± SEM. (E) Average tetanic force from uninjured (blue) tibialis anterior muscle at 28 dpi following 1-mm (black) or 2-mm (gray) VML injuries. Bars show mean ± SEM and *p<0.05 between injury types by two-way ANOVA and post hoc. n = 6–8 tissues 6–8 mice per group. (F) Representative force curves of uninjured tibialis anterior muscle (blue) at 28 dpi following 1-mm (black) or 2-mm (gray) injuries. For (C) and (D), unpaired t-test with Welch’s correction. *p<0.05 and **p<0.01.

Figure 1—figure supplement 1
Functional assessment of response to healing or degenerative volumetric muscle loss injuries.

(A, B) Force frequency of muscle (A) and nerve stimulation (B) of uninjured, 1-mm and 2-mm groups uninjured (blue) tibialis anterior muscle at 28 d post injury (dpi) (1 mm [black] or 2 mm [gray]). Points show mean ± SEM and ****p<0.0001 between uninjured and 2-mm injury groups by two-way ANOVA and post hoc. n = 6–8 tissues from 6 to 8 mice per group. (C) Average tetanic force from nerve stimulation of uninjured tibialis anterior muscle at 28 dpi. Bars show mean ± SEM and *p<0.05 between injury types by two-way ANOVA and post hoc. n = 6–8 tissues from 6 to 8 mice per group. (D, E) Tetanic force normalized to total muscle cross-sectional area (CSA) (mm2) from nerve (D) and muscle (E) stimulation of uninjured tibialis anterior muscle at 28 dpi. Bars show mean ± SEM. n = 6–8 tissues from 6 to 8 mice per group.

Figure 2 with 1 supplement
Lipidomic profiling after volumetric muscle loss (VML) injuries reveals stronger and sustained lipid mediator response in degenerative injuries.

(A) Mice were administered a bilateral defect to tibialis anteriors (TAs) (left leg received a 1-mm defect and right leg received a 2-mm defect). Tissues were harvested at 0, 3, 7, and 14 d post injury (dpi) and subjected to liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. n = 5 tissues from five mice per injury type and timepoint. Statistical analyses were paired. (B) Row-scaled heatmap of 53 differentially expressed analytes across injuries and timepoints. Analytes are grouped by Dirichlet Process Gaussian Process (DPGP) clusters. (C–D, F–G) Changes of specific lipid metabolites in different clusters per injury type and timepoint expressed in pmol/mg. Two-way paired ANOVA was used to estimate statistical differences between injury and timepoints. Graphs show mean ± SEM, *<0.05 between timepoints of matched injury timepoint, **<0.01 between different injury types, and #<0.05 between different injury types at a certain timepoint. (C, D) Prostaglandin F2 alpha and 12-HETE are both eicosanoids related to pro-inflammatory effects. (E) Eicosanoids (TXB2, PGD2, PGE2, PGF, 6kPGF, and 5-, 12-, 15-HETEs) vs pro-resolving mediators pathway markers (5-HEPE, 4-HDoHE, 7-HDoHE, 12-HEPE, 14-HDoHE, RvD6, PD1, 10S,17S-DiHDoHE, Maresin 1, Mar1-n3DPA, LXA4) graphed for 2-mm and 1-mm VML defects at 0, 3, 7, and 14 dpi. Both analyte groups were normalized to ratios adding up to 1. Two-way paired ANOVA statistical tests were used to compare values between injury and timepoints. *p<0.05 between timepoints of matched injury timepoint, and #p<0.05 between different injury types at a certain timepoint. (F) 14-HDoHE represents a pathway marker for maresins. (G) 17-HDoHE is a pathway marker for D-resolvins/protectins. Both maresins and resolvins are related to anti-inflammatory effects.

Figure 2—figure supplement 1
Dynamics of lipid mediators after volumetric muscle loss injury.

(A) Dirichlet Process Gaussian Process (DPGP) mixture model-based clustering of mean analyte abundance fold change z-scores across injury timepoints. Black lines are cluster means, and the gray bars show 2 SDs around the mean. Color scheme for each cluster corresponds to Figure 2 DPGP heatmap (B–F) Changes of pooled lipid mediators metabolites per injury type and timepoint expressed in pmol/mg. Two-way paired ANOVA was used to estimate statistical differences between injury and timepoints. Graphs show mean ± SEM, *p<0.05 between timepoints of matched injury timepoint and #p<0.05 between different injury types at a certain timepoint. (B) Sum of 12-HETE, 12-HEPE, and 14-HDoHE. 12-HETE is commonly related to pro-inflammatory effects while 14-HDoHE is a known pathway marker for Maresin 1. (C) Sum of 15-HETE, 15-HEPE, and 17-HDoHE. 15-HETE is commonly related to pro-inflammatory effects while 17-HDoHE is a known pathway marker for resolvings. (D) Sum of PGI2 (6kPGF), PGF, PGE2, PGD2, and TXB2. Prostaglandins and thromboxanes have been commonly related to pro-inflammatory effects. (E) Sum of EpETrEs, DiHETrEs, EpETEs, and EpDPEs. Cytochrome P450 epoxygenase pathway has been related to anti-inflammatory effects that remains as an understudied pathway. (F) Sum of 5-HETE, 5-HEPE, 4-HDoHE, and 7-HDoHE. 5-HETE is commonly related to pro-inflammatory effects.

Figure 3 with 3 supplements
Repletion of Maresin 1 after degenerative volumetric muscle loss (VML) injury results in reductions in inflammation and fibrosis.

(A) Mice were administered bilateral 2-mm VML defects to their tibialis anterior (TA) muscles. One limb received an intramuscular injection of Maresin 1 and the other limb received vehicle (saline + 0.01% EtOH) treatment every 2 d. (B) Representative cross-sections stained with Picrosirius red isolated 7 d post injury (dpi) following treatment with vehicle or Maresin 1 treatment. n = 7 tissues from seven mice per group, scale bar = 500 μm. Inset scale bar = 150 um. *p<0.05 by paired t-test.(C) Quantitation of Picrosirius red at 7 dpi from (B) shows a reduction of collagen deposition for Maresin 1 treatment. Graphs show mean ± standard error of mean (SEM), **p<0.01 by paired t-test. (D) Representative cross-sections from muscles isolated 7 dpi treated with vehicle or Maresin 1 treatment. Sections are immunostained for CD68 (red), DAPI (blue), and laminin (white). n = 7 tissues from seven mice per group, scale bar = 500 μm. Inset scale bar = 150 um. (E) Quantitation of number of macrophages (CD68+) at 7 dpi from (D) shows a decrease in the number of macrophages for Maresin 1 treatment. Graphs show mean ± SEM, *p<0.05 by paired t-test. (F) Representative cross-sections from muscles isolated 7 dpi treated with vehicle or Maresin 1 treatment. Sections are immunostained for TdTomato (red), DAPI (blue), and laminin (green). Scale bar = 500 μm. Inset scale bar = 150 um. (G) Quantitation of average cross-sectional area of fibers positive for TdTomato. n = 4 tissues from four mice per group. (H) Average tetanic force from muscle stimulation of uninjured (blue) TA muscle at 28 dpi and treatment with saline (black) and Maresin 1 (gray). Bars show mean ± SEM and ****p<0.0001 between uninjured and VML + Maresin 1 treatment, and between uninjured and VML + saline treatment, and p=0.0477 between VML + Maresin 1 and VML + saline treatment by one-way ANOVA and post hoc. n = 11 tissues from 11 mice per group. (I) Representative force curves of uninjured TA muscle (blue) at 28 dpi following saline (black) and Maresin 1 treatment (gray).

Figure 3—figure supplement 1
Immune profiling of response to volumetric muscle loss (VML) injury after treatment with Maresin 1.

(A) Complete gating strategy for neutrophils and macrophages. Values indicate percentage of parent. (B) Maresin 1 treatment significantly reduced neutrophil abundance and reduced F4/80+ macrophage abundance by flow cytometry at 7 d post injury (dpi). Graphs show mean ± standard error of mean (SEM), *p<0.05 by two-sided, two-sample t-test. n = 8–10 tissues from 4 to 5 mice. (C) FMO control for Ly6G-APC-Cy7. Values indicate percentage of CD45+ cells. (D) FMO control for F4/80-AF488. Values indicate percentage of CD45+ cells.

Figure 3—figure supplement 2
Regenerative response to volumetric muscle loss (VML) injury after treatment with Maresin 1.

(A) Representative cross-sections from muscles isolated 7 d post injury (dpi) with vehicle (top) or Maresin 1 (bottom) treatment. Sections are immunostained for embryonic myosin heavy chain (eMyHC) (green), DAPI (blue), and laminin (white). Scale bar = 500 μm. (B) Distributions of Feret diameter for eMyHC+ myofibers show increased number of larger regenerating myofibers for Maresin 1 treatment when compared to vehicle treatment at 7 dpi. Graphs show mean ± SEM, n = 11 tissues from 11 mice per group. * p< 0.05 by unpaired t-test."(C) Percentage of centrally nucleated fibers at 7 dpi. Bars show mean ± SEM, n = 11 tissues from 11 mice per group. (D) Distributions of Feret diameter for TdTomato+ myofibers show increased number of larger regenerating myofibers for Maresin 1 treatment when compared to vehicle treatment at 7 dpi. Graphs show mean ± SEM, n = 4 tissues from four mice per group. p< 0.05 by unpaired t-test.(E) Percentage of TdTomato+ positive fibers (n = 4 tissues from four mice per group).

Figure 3—figure supplement 3
Changes in muscle force after volumetric muscle loss (VML) injury are enacted with treatment with Maresin 1.

(A, B) Force frequency of nerve (A) and muscle stimulation (B) of uninjured (blue) tibialis anterior muscle at 28 d post injury (dpi) following treatment with saline (black) or Maresin 1 (gray). Points show mean ± SEM and ****p<0.0001 between uninjured and vehicle, uninjured and Maresin 1 treatment, and ***p<0.001 between vehicle and Maresin 1 treatments (A) ****p<0.001 between vehicle and Maresin 1 treatments (B) by two-way ANOVA and post hoc analysis. n = 6–9 tissues from 6 to 9 mice per group. (C) Average tetanic force from nerve stimulation of uninjured tibialis anterior muscle at 28 dpi following 2-mm VML injuries treated with saline and Maresin 1. Bars show mean ± SEM and ****p<0.0001 between uninjured and VML + saline treatment and between uninjured and VML + Maresin 1 treatment, and p=0.0690 between VML + Maresin 1 and VML + saline treatment by one-way ANOVA and post hoc. n = 6–9 tissues from 6 to 9 mice per group. (D, E) Tetanic force normalized to total muscle cross-sectional area (CSA) (mm2) from muscle (D) and nerve (E) stimulation of uninjured tibialis anterior muscle at 28 dpi following 2-mm VML injuries treated with saline and Maresin 1. Bars show mean ± SEM and *p<0.05 between uninjured and VML + saline treatment by one-way ANOVA and post hoc analysis. n = 6–9 tissues from 6 to 9 mice per group.

Figure 4 with 1 supplement
Maresin 1 impacts muscle stem cell (MuSC) proliferation through Lgr6.

(A) Lgr6 is highly upregulated in proliferating myoblasts by RT-qPCR. Graph shows mean ± SEM, ****p<0.0001 by one-way ANOVA and Benjamini–Hochberg (BH) post hoc analysis. n = 3–4 wells per condition. (B) Treatment of myoblasts with a low concentration of Maresin 1 in vitro increases proliferation based on EdU incorporation over 24 hr. Graph shows mean ± SEM, *p<0.05 by one-way ANOVA with BH post hoc analysis. n = 4 wells per condition, where each well was quantified using four separate 10× images. Scale bars indicate 150 um. (C) Measurement of cyclic AMP in primary myoblasts treated with 10 nM Maresin 1 or vehicle for 24 hr. n = 8 biological replicates, each value was calculated by averaging three wells per condition for each mouse. Data presented as mean ± SEM. *p<0.05 by two-sided paired t-test. (D) β-Catenin levels are unchanged following Maresin 1 treatment of wildtype MuSCs in vitro. ns denotes p>0.05 by two-sided, two-sample t-test. n = 6 wells per condition. (E) Schematic of MuSC lineage reporter for canonical Wnt signaling. In response to canonical Wnt, cells express green fluorescent protein in their nuclei. (F) In vivo treatment of volumetric muscle loss (VML) injuries with Maresin 1 reduces activation of canonical Wnt signaling in Pax7+ MuSCs using the P7Wnt-GFP mouse model at 7 d post injury (dpi). Graph shows mean ± SEM, *p<0.05 by two-sided, two-sample t-test. n = 3 mice per condition. Scale bars indicate 100 um.

Figure 4—figure supplement 1
Experimental evaluation of parameters for Maresin 1 treatment of muscle stem cells (MuSCs) and their progeny in vitro.

(A) Maresin 1 dose–response curve showed the most impact on proliferation with treatment using 10 nM. There was no statistically significant effect with higher doses. *p<0.05 by one-way ANOVA with post hoc analysis. n = 4 wells per condition, each reflecting the combined analysis of 10 images. (B) MuSCs isolated from P7Wnt mice demonstrate increased percentage of GFP+ cells in response to treatment with recombinant Wnt3a protein. *p<0.05 by two-sided, two-sample t-test. n = 8 wells per condition. (C) ELISA assay targeting TGFβ1 in volumetric muscle loss (VML) injured tibialis anterior (TA) muscles. Maresin 1 and vehicle treatments were administered every 2 d throughout 7 d post injury (dpi). Points show mean ± SEM and *p<0.05 between uninjured and vehicle, uninjured and Maresin 1 treatments by one-way ANOVA and post hoc. n = 3–4 tissues from two mice per group.

Figure 5 with 1 supplement
Cellular and molecular response to Maresin 1 repletion after degenerative volumetric muscle loss supports enhanced myogenic response and reduction of fibrotic macrophages at 7 d post injury (dpi).

(A) Uniform Manifold Approximation and Projection (UMAP) plots colored by clusters at a resolution of 0.2 and annotated into cell types. (B) UMAP plots split by treatment and colored by cell type. (C) Fold changes in cell-type abundance across conditions. Positive fold changes indicate increased abundance in Maresin 1-treated samples. *p<0.05, **p<0.01 by two-sided z test for proportions. N = 21,679 cells (10,462 cells for Maresin treatment and 11,217 cells for vehicle treatment). (D) Differential gene expression among each cell type across treatments normalized to the vehicle control. Gray region indicates adjusted p-value<0.05. z-scores and p-values were calculated for each gene using MAST. (E) Volcano plot showing differentially expressed genes among macrophages from vehicle vs Maresin 1-treated tissues. Fold changes and adjusted p-values were calculated using Wilcoxon sum-rank test. Fold change values > 2 (Log2 FC> 0.0585) and p-adjusted values < 0.05 were considered significant. (F) Volcano plot showing differentially expressed genes among MuSCs from vehicle vs Maresin 1treated tissues. Fold changes and adjusted p-values were calculated using Wilcoxon sum-rank test. Fold change values > 2 (Log2 FC > 0.0585) and p-adjusted values < 0.05 were considered significant and are plotted in yellow.

Figure 5—figure supplement 1
Quality control metrics for single-cell sequencing after volumetric muscle loss (VML) injury and treatment with Maresin 1.

(A) Uniform Manifold Approximation and Projection (UMAP) plots colored by the number of genes per cell (left) and the number of unique molecular identifiers per cell (right). (B) Dot plot of known marker gene expression for each cell type.

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Biological sample (Mus musculus)C57BL/6J wild-type miceJackson LabsJackson Stock 000664Female (2–3 mo)
Biological sample (M. musculus)Pax7CreERT2/+;Rosa26Tcf/Lef-LSL-H2B-GFP miceUniversity of MichiganJackson stock 017763 crossed with Jackson stock 032577Female (2–3 mo)
Biological sample (M. musculus)Pax7CreERT2 – Rosa26-TdTomatoUniversity of MichiganJackson stock 017763 crossed with Jackson stock 007914Female (2–3 mo)
AntibodyAF488 anti-mouse monoclonal F4/80, clone: BM8, isotype: Rat IgG2a, κBioLegend123119; RRID:AB_893491FC (1:200)
AntibodyAPC-Cy7 anti-mouse monoclonal Ly-6G, clone: 1A8, isotype: Rat IgG2a, κBioLegend127624; RRID:AB_10640819FC (1:400)
AntibodyAPC anti-mouse monoclonal Ly-6A/E (Sca-1), clone: D7, isotype: Rat IgG2a, κBioLegend108112; RRID:AB_313349FC (1:400)
AntibodyAPC anti-mouse monoclonal CD45, clone: 30-F11, isotype: Rat IgG2b, κBioLegend103112; RRID:AB_312977FC (1:400)
AntibodyAPC anti-mouse monoclonal TER-119, clone: TER-119, isotype: Rat IgG2b, κBioLegend116212; RRID:AB_313713FC (1:400)
AntibodyAPC anti-mouse monoclonal CD31, clone: 390, Isotype: Rat IgG2a, κBioLegend102410; RRID:AB_312905FC (1:400)
AntibodyAPC anti-mouse/human monoclonal CD11b, clone: M1/70. Isotype: Rat IgG2b, κBioLegend101212; RRID:AB_312795FC (1:400)
AntibodyPE anti-mouse/rat monoclonal CD29 (B1 int), clone: HMβ1-1, isotype: Armenian Hamster IgGBioLegend102208; RRID:AB_312885FC (1:200)
AntibodyBiotin Rat AntiMouse monoclonal CD184, clone: 2B11/CXCR4 (RUO), isotype: Rat IgG2b, κBD Biosciences551968; RRID:AB_394307FC (1:200)
AntibodyAnti-mouse monoclonal CD68, clone: FA-11, isotype: IgG2aBio-RadMCA1957IF (1:50)
AntibodyMouse monoclonal Anti-human MYH3DHSBF1.652IF (1:20)
AntibodyChicken polyclonal Anti-mouse GFPAbcamab13970; RRID:AB300798IF (1:1000)
AntibodyRabbit anti-mouse laminin 1+2, Isotype: Polyclonal IgGAbcamab7463; RRID:AB_305933IF (1:500)
AntibodyRabbit polyclonal Anti-RFPRockland600-401-379; RRID:AB_2209751IF (1:50)
AntibodyRabbit polyclonal Anti-Beta catenin polyclonal (CAT-15)Thermo Fisher71-2700; RRID:AB_2533982IF (1:100)
AntibodyGoat polyclonal Anti-rabbit IgG (H+L), Alexa Fluor 647 conjugateThermo FisherA27040; RRID:AB_2536101IF (1:500)
AntibodyGoat polyclonal Anti-rat (H+L), Alexa Fluor 647 conjugateThermo FisherA21247; RRID:AB_141778IF (1:500)
AntibodyGoat polyclonal Anti-mouse (H+L), Alexa Fluor 488 conjugateThermo FisherA28175; RRID:AB_2536161IF (1:500)
AntibodyGoat polyclonal Anti-chicken IgY (H+L), Alexa Fluor 488 conjugateThermo FisherA32931TR; RRID:AB_2866499IF (1:500)
AntibodyGoat polyclonal Anti-rabbit (H+L), Alexa Fluor 555 conjugateThermo FisherA21247; RRID:AB_141778IF (1:500)
Sequence-based reagentPrimeTime Mouse GAPDH PrimerIntegrated DNA TechnologiesMm.PT.39a1
Sequence-based reagentPrimeTime Mouse Lgr6 PrimerIntegrated DNA TechnologiesMm.PT.58.9348010
Sequence-based reagentMouse Lgr6 DsiRNA #1Integrated DNA Technologiesmm.Ri.Lgr6.13.2
Sequence-based reagentMouse Lgr6 DsiRNA #2Integrated DNA Technologiesmm.Ri.Lgr6.13.1
Sequence-based reagentCell Multiplexing Oligos10x Genomics1000261
Peptide, recombinant proteinBovine serum albuminFisher ScientificBP9703-100
Peptide, recombinant proteinFibroblast growth factor basicGibco-InvitrogenPHG0263
Peptide, recombinant protein0.25% Trypsin EDTAGibco-Invitrogen25200072
Peptide, recombinant proteinHALT Protease Inhibitor CocktailThermo Fisher87786
Chemical compound, drugDispase II (activity ≥ 0.5 units/mg solid)SigmaD4693-1GDigestion of tissue to extract MuSCs
Chemical compound, drugCollagenase type II (654 U/mg, non-specific proteolytic activity 487 U/mg)Life Technologies17101015Digestion of tissue to extract MuSCs
Chemical compound, drugDMEM, high glucose, pyruvateLife Technologies11995065
Chemical compound, drugHam’s F-10 Nutrient MixLife Technologies11550043
Chemical compound, drugTissue Plus O.C.T CompoundFisher Scientific23-730-571
Chemical compound, drugMagnesium sulfate heptahydrateSigma-Aldrich63138-250G
Chemical compound, drugSodium bicarbonateSigma-AldrichS5761
Chemical compound, drugSafeClear IIFisher Scientific23-044192
Chemical compound, drugPicric acidSigma-AldrichP6744-1GA
Chemical compound, drugGlacial acetic acidSigma-AldrichBP2401-500
Chemical compound, drugXylenesSigma-Aldrich534056-4L
Chemical compound, drugPermountFisher ScientificSP15-100
Chemical compound, drug0.5 M EDTAInvitrogen15575-038
Chemical compound, drugSodium azideSigma-Aldrich71289
Chemical compound, drug4% paraformaldehyde in PBSThermo FisherJ19943-K2
Chemical compound, drugPenicillin streptomycinGibco-Invitrogen15640055
Chemical compound, drugMaresin 1Cayman Chemicals10878
Chemical compound, drugTween-20Sigma-AldrichP1379
Chemical compound, drugTritonX-100Sigma-AldrichT8787
Chemical compound, drugTamoxifenSigma-AldrichT2859-1G
Chemical compound, drugCorn OilSigma-AldrichC8267-2.5L
Commercial assay or kitSatellite Cell Isolation Kit, mouseMiltenyi130-104-268
Commercial assay or kitTGF beta 1 DuoSet ELISA KitR&D SystemsDY1679
Commercial assay or kitPierce BCA Assay KitThermo Fisher23227
Commercial assay or kitEdU ClickIt Reaction KitThermo FisherC10340
Commercial assay or kitSuperScript III First-Strand Synthesis KitThermo Fisher18080051
Commercial assay or kitQIAGEN RNeasy Mini KitQIAGEN74104
Commercial assay or kitQubit RNA HS AssayThermo FisherQ32852
Commercial assay or kitSingle cell 3’ Library & Gel Bead Kit10x Genomics120267
Commercial assay or kitcAMP-Glo AssayPromegaV1501
Software, algorithmCellRanger v7.0.010x Genomicshttps://support.10xgenomics.com/single-cell-gene-expression/software/downloads
Software, algorithmR v4.2.1The R Foundation for Statistical Computinghttps://www.r-project.org/; RRID:SCR_001905
Software, algorithmPythonhttps://www.python.org/
Software, algorithmMetaboDiff v0.9.5Mock et al., 2018; Mock, 2020https://github.com/andreasmock/MetaboDiff
Software, algorithmDPGP v0.1McDowell et al., 2018a; McDowell et al., 2018bhttps://github.com/PrincetonUniversity/DP_GP_cluster
Software, algorithmMATLAB_R2020aMathWorkshttps://www.mathworks.com/products/matlab.html
Software, algorithmSeurat v4.2.1Stuart et al., 2019https://satijalab.org/seurat/; RRID:SCR_007322
Software, algorithmggplot2 v3.2.1Wickham et al., 2016https://ggplot2.tidyverse.org; RRID:SCR_014601
Software, algorithmFlowJo v10https://www.flowjo.com; RRID:SCR_008520
Software, algorithmImageJ v2.1.0https://imagej.net/ImageJ; RRID:SCR_002285
Software, algorithmCellposeStringer et al., 2021RRID:SCR_021716
Software, algorithmLabelsToROIsWaisman et al., 2021https://labelstorois.github.io/
Software, algorithmBioinformatics analysis codeThis paperhttps://github.com/AguilarLab/Maresin1 (copy archived at Castor-Macias et al., 2023)Algorithm used to generate Figure 5, Figure 5—figure supplement 1. Refer to data processing and analysis under single-cell RNA sequencing
OtherStreptavidin PE-Cyanine7Thermo Fisher25-4317-82; RRID:AB_10116480FC (1:100)
OtherscRNA-seq datasetsThis paperGSE215808Refer to data processing and analysis under single-cell RNA sequencing.
OtherLS ColumnsMiltenyi130-042-401MACS isolation
OtherUltraComp eBeadsFisher Scientific01-2222-42Single color controls for Flow Cytometry
OtherRIPA BufferThermo Fisher89900Tissue homogenization reagent in ELISA assays
OtherLipofectamine RNAiMAXInvitrogen13-778-030Transfection reagent
OtherHoechst 33342Thermo FisherH3570IF (1:1000) nuclear stain
OtherSYBR Green PCR MasterMixThermo Fisher4309155PCR reagent
OtherMatrigelBD Biosciences356234Cell culture coating reagent
OtherHorse SerumGibco-Invitrogen26050088Cell culture
OtherProlong DiamondThermo FisherP36965Mounting media
OtherDirect Red 80Fisher ScientificAAB2169306Picrosirius red stain
OtherHematoxylinRicca Chemical Company3530-16H&E stain
OtherEosinEMD-Millipore588X-75H&E stain
OtherFetal bovine serumLife Technologies10437028Tissue digestion reagent
OtherNormal goat serumAbcamAb7481; RRID:AB_2716553IHC stain
OtherPropidium iodide – 1.0 mg/mL solution in WaterLife TechnologiesP3566FC (1:400)
Other7-AADBioLegend420403FC (1:200)
OtherMouse on Mouse blocking reagentVector LabsMKB-2213IHC stain

Additional files

MDAR checklist
https://cdn.elifesciences.org/articles/86437/elife-86437-mdarchecklist1-v2.docx
Supplementary file 1

Metabolite concentration (pmol/g) for different pathways in uninjured, 1 mm VML, and 2 mm (TA) tissue homogenates.

https://cdn.elifesciences.org/articles/86437/elife-86437-supp1-v2.xlsx

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jesus A Castor-Macias
  2. Jacqueline A Larouche
  3. Emily C Wallace
  4. Bonnie D Spence
  5. Alec Eames
  6. Pamela Duran
  7. Benjamin A Yang
  8. Paula M Fraczek
  9. Carol A Davis
  10. Susan V Brooks
  11. Krishna Rao Maddipati
  12. James F Markworth
  13. Carlos A Aguilar
(2023)
Maresin 1 repletion improves muscle regeneration after volumetric muscle loss
eLife 12:e86437.
https://doi.org/10.7554/eLife.86437