Abstract

Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knock-out mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and raw data can be found at Mendeley Data: doi:10.17632/tcc2mbmys4.1.

Article and author information

Author details

  1. Angelo Ascani

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Torstensson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4389-2662
  3. Sanjiv Risal

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Haojiang Lu

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Gustaw Eriksson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0120-9028
  6. Congru Li

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Sabrina Teschl

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Joana Menezes

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Katalin Sandor

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-6907
  10. Claes Ohlsson

    Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Camilla I Svensson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Mikael CI Karlsson

    Department of Microbiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Martin Helmut Stradner

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  14. Barbara Obermayer-Pietsch

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    For correspondence
    barbara.obermayer@medunigraz.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3543-1807
  15. Elisabet Stener-Victorin

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    elisabet.stener-victorin@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3424-1502

Funding

Vetenskapsrådet (2018-02435 and 2022-00550)

  • Elisabet Stener-Victorin

Novo Nordisk Fonden (NNF22OC0072904 and NNF19OC0056647)

  • Elisabet Stener-Victorin

Diabetes Fonden (DIA2021-633 and DIA2022-708)

  • Elisabet Stener-Victorin

EMBO Scientific Exchange Grants 2021 (STF 8938)

  • Angelo Ascani

European Research Council under the European Union's Horizon 2020 research and innovation program (866075)

  • Camilla I Svensson

Knut and Alice Wallenberg Foundation (018.0161)

  • Camilla I Svensson

Austrian Science Fund (W1241)

  • Barbara Obermayer-Pietsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Stockholm Ethical Committee for animal research (20485-2020) in accordance with the Swedish Board of Agriculture's regulations and recommendations (SJVFS 2019:9) and controlled by Comparative Medicine Biomedicum at the Karolinska Institutet in Stockholm, Sweden.

Human subjects: Participants provided oral and written informed consent after a positive vote of the Ethics committee of the Medical University Graz (EK 31-560 ex 18/19). The work here described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans.

Copyright

© 2023, Ascani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,305
    views
  • 273
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angelo Ascani
  2. Sara Torstensson
  3. Sanjiv Risal
  4. Haojiang Lu
  5. Gustaw Eriksson
  6. Congru Li
  7. Sabrina Teschl
  8. Joana Menezes
  9. Katalin Sandor
  10. Claes Ohlsson
  11. Camilla I Svensson
  12. Mikael CI Karlsson
  13. Martin Helmut Stradner
  14. Barbara Obermayer-Pietsch
  15. Elisabet Stener-Victorin
(2023)
The role of B cells in immune cell activation in polycystic ovary syndrome
eLife 12:e86454.
https://doi.org/10.7554/eLife.86454

Share this article

https://doi.org/10.7554/eLife.86454

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Xu Zheng, Shi Yu ... Guangxun Meng
    Research Article

    Innate immune responses triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play pivotal roles in the pathogenesis of COVID-19, while host factors including proinflammatory cytokines are critical for viral containment. By utilizing quantitative and qualitative models, we discovered that soluble factors secreted by human monocytes potently inhibit SARS-CoV-2-induced cell-cell fusion in viral-infected cells. Through cytokine screening, we identified that interleukin-1β (IL-1β), a key mediator of inflammation, inhibits syncytia formation mediated by various SARS-CoV-2 strains. Mechanistically, IL-1β activates RhoA/ROCK signaling through a non-canonical IL-1 receptor-dependent pathway, which drives the enrichment of actin bundles at the cell-cell junctions, thus prevents syncytia formation. Notably, in vivo infection experiments in mice confirmed that IL-1β significantly restricted SARS-CoV-2 spread in the lung epithelium. Together, by revealing the function and underlying mechanism of IL-1β on SARS-CoV-2-induced cell-cell fusion, our study highlights an unprecedented antiviral function for cytokines during viral infection.

    1. Immunology and Inflammation
    Ning Song, Hang Gao ... Wenlong Zhang
    Research Article

    Gout is a prevalent form of inflammatory arthritis that occurs due to high levels of uric acid in the blood leading to the formation of urate crystals in and around the joints, particularly affecting the elderly. Recent research has provided evidence of distinct differences in the gut microbiota of patients with gout and hyperuricemia compared to healthy individuals. However, the link between gut microbiota and age-related gout remained underexplored. Our study found that gut microbiota plays a crucial role in determining susceptibility to age-related gout. Specifically, we observed that age-related gut microbiota regulated the activation of the NLRP3 inflammasome pathway and modulated uric acid metabolism. More scrutiny highlighted the positive impact of ‘younger’ microbiota on the gut microbiota structure of old or aged mice, enhancing butanoate metabolism and butyric acid content. Experimentation with butyrate supplementation indicated that butyric acid exerts a dual effect, inhibiting inflammation in acute gout and reducing serum uric acid levels. These insights emphasize the potential of gut microbiome rejuvenation in mitigating senile gout, unraveling the intricate dynamics between microbiota, aging, and gout. It potentially serves as a therapeutic target for senile gout-related conditions.