Abstract

Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knock-out mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and raw data can be found at Mendeley Data: doi:10.17632/tcc2mbmys4.1.

Article and author information

Author details

  1. Angelo Ascani

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Torstensson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4389-2662
  3. Sanjiv Risal

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Haojiang Lu

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Gustaw Eriksson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0120-9028
  6. Congru Li

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Sabrina Teschl

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Joana Menezes

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Katalin Sandor

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-6907
  10. Claes Ohlsson

    Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Camilla I Svensson

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Mikael CI Karlsson

    Department of Microbiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Martin Helmut Stradner

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  14. Barbara Obermayer-Pietsch

    Department of Internal Medicine, Medical University of Graz, Graz, Austria
    For correspondence
    barbara.obermayer@medunigraz.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3543-1807
  15. Elisabet Stener-Victorin

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    elisabet.stener-victorin@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3424-1502

Funding

Vetenskapsrådet (2018-02435 and 2022-00550)

  • Elisabet Stener-Victorin

Novo Nordisk Fonden (NNF22OC0072904 and NNF19OC0056647)

  • Elisabet Stener-Victorin

Diabetes Fonden (DIA2021-633 and DIA2022-708)

  • Elisabet Stener-Victorin

EMBO Scientific Exchange Grants 2021 (STF 8938)

  • Angelo Ascani

European Research Council under the European Union's Horizon 2020 research and innovation program (866075)

  • Camilla I Svensson

Knut and Alice Wallenberg Foundation (018.0161)

  • Camilla I Svensson

Austrian Science Fund (W1241)

  • Barbara Obermayer-Pietsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the Stockholm Ethical Committee for animal research (20485-2020) in accordance with the Swedish Board of Agriculture's regulations and recommendations (SJVFS 2019:9) and controlled by Comparative Medicine Biomedicum at the Karolinska Institutet in Stockholm, Sweden.

Human subjects: Participants provided oral and written informed consent after a positive vote of the Ethics committee of the Medical University Graz (EK 31-560 ex 18/19). The work here described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans.

Copyright

© 2023, Ascani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,383
    views
  • 289
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angelo Ascani
  2. Sara Torstensson
  3. Sanjiv Risal
  4. Haojiang Lu
  5. Gustaw Eriksson
  6. Congru Li
  7. Sabrina Teschl
  8. Joana Menezes
  9. Katalin Sandor
  10. Claes Ohlsson
  11. Camilla I Svensson
  12. Mikael CI Karlsson
  13. Martin Helmut Stradner
  14. Barbara Obermayer-Pietsch
  15. Elisabet Stener-Victorin
(2023)
The role of B cells in immune cell activation in polycystic ovary syndrome
eLife 12:e86454.
https://doi.org/10.7554/eLife.86454

Share this article

https://doi.org/10.7554/eLife.86454

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.

    1. Immunology and Inflammation
    Mohsen Khosravi-Maharlooei, Andrea Vecchione ... Megan Sykes
    Research Article

    Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.