Control of telomere length in yeast by SUMOylated PCNA and the Elg1 PCNA unloader

  1. Pragyan Singh
  2. Inbal Gazy
  3. Martin Kupiec  Is a corresponding author
  1. The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
7 figures, 4 tables and 1 additional file

Figures

SUMOylated PCNA regulates telomere length.

(A) Southern blot (Teloblot) showing that lack of SUMOylation of PCNA prevents telomere elongation. Independently created colonies were passaged ten times, its DNA extracted, digested with XhoI, and run in an agarose gel. The DNA was then transferred to a nitrocellulose membrane, which was incubated with a radioactive probe that detects telomeres, and a size marker. (B) Teloblot showing that overexpression of wild-type PCNA or Pol30-RR-SUMO fusion, but not Pol30-ubiquitin fusion or Pol30-RR causes telomere elongation.

Genetic and physical interaction between ELG1 and STN1.

(A) Teloblot showing epistasis between elg1Δ and stn1 mutants. (B) Co-Immunoprecipitation experiment showing physical interaction between Elg1 and Stn1 and reduced physical interaction between Elg1-sim and Stn1. No interaction could be detected between Elg1 and Cdc13 or Ten1.

Figure 2—source data 1

The source data contains the Southern blots and the Western blots used to make the figure.

https://cdn.elifesciences.org/articles/86990/elife-86990-fig2-data1-v1.zip
Figure 3 with 2 supplements
Determinants of the Elg1-Stn1 interaction.

(A) Schematic representation of the Elg1 protein. The three SIM motifs, the WalkerA motif and the two threonines at the interface with PCNA, are shown. (B) Yeast two-hybrid (YTH) interaction of Cdc13 and Elg1 in a wild-type strain. AD: protein fused to the activating domain of Gal4; BD: protein fused to the DNA binding domain of Gal4. e.v.: empty vector. (C) YTH interaction of Stn1 and Elg1 in a wild-type strain. (D) YTH experiments in the siz1Δ siz2Δ and pol30-RR background. (E) Co-Immunoprecipitation experiment showing physical interaction between Cdc13 and PCNA.

Figure 3—source data 1

The Source data contains the Western blots used in Figure 3E.

https://cdn.elifesciences.org/articles/86990/elife-86990-fig3-data1-v1.zip
Figure 3—figure supplement 1
Weak interaction between Elg1 and Ten1.

Results of yeast two-hybrid (YTH) experiments.

Figure 3—figure supplement 2
Cdc13 interacts with PCNA, and mutations that prevent PCNA SUMOylation (pol30-RR) also impair its interaction with Cdc13.
Figure 4 with 2 supplements
The unloading activity of Elg1 and Cdc13 SUMOylation are necessary for the Elg1-Cdc13 interaction.

(A) Yeast-two-hybrid (YTH) experiment in a elg1Δ strain. (B) YTH experiment in a elg1-sim strain. (C) YTH experiment in a elg1-TT386/7DD strain. (D) YTH experiment in a elg1-sim+DD strain. (E) YTH experiment in a elg1-Walker AB strain. (F) Lack of interaction between cdc13-snm and Elg1 (in a wild-type strain).

Figure 4—figure supplement 1
All elg1 alleles used are expressed at similar levels.

Western blot results.

Figure 4—figure supplement 1—source data 1

The Source Data contains the Western Blot used in the figure.

https://cdn.elifesciences.org/articles/86990/elife-86990-fig4-figsupp1-data1-v1.zip
Figure 4—figure supplement 2
SUMOylation of the genomic copy of Cdc13 has no effect on the interactions of a wt copy with Stn1 or Elg1.

(A) The sumo-no-more allele of Cdc13 has no effect on the yeast-two-hybrid (YTH) interactions between wt Cdc13 or Stn1 and the N-terminus of Elg1. (B) The C-terminus of Stn1 interacts with the N-terminus of Elg1 in wild-type and elg1Δ strains.

Figure 5 with 1 supplement
Timing of Elg1-Stn1 interaction.

(A) Co-IP experiment with synchronized cells. Aliquots were taken at time intervals, Elg1 was immunoprecipitated, and the level of Stn1 and Pol3 (the large subunit of DNA polymerase Delta) was monitored by western blot. Strains with single tags are shown as controls. Whole-cell extract results are shown in Figure 5—figure supplement 1. (B) Quantitation of the western shown in (A). (C) DNA content of the cells used in (A) by cell cytometry. (D) Chromatin immunoprecipitation at telomeres (Telo-ChIP) in synchronized cells showing PCNA occupancy. (E) Interaction between Stn1 and Cdc13 in a wild type and a elg1Δ strain. (F) Quantitation of three independent biological repeats of the experiment shown in (E). **p<0.001.

Figure 5—source data 1

The Source Data contains the original Western blots used to make the figure.

https://cdn.elifesciences.org/articles/86990/elife-86990-fig5-data1-v1.zip
Figure 5—figure supplement 1
Whole-cell extract showing the level of Elg1, Stn1, and Pol3 in the cell cycle experiment shown in Figure 5.
Figure 5—figure supplement 1—source data 1

The Source Data contains the original Western blots used to generate the figure.

https://cdn.elifesciences.org/articles/86990/elife-86990-fig5-figsupp1-data1-v1.zip
Model for the role of SUMOylated PCNA and Elg1 in telomere length regulation.

(A) Cdc13 binds ssDNA at the telomeres, Elg1 moves with the replisome at the lagging strand, unloading PCNA in each Okazaki fragment. (B) Arrival of the SUMOylated PCNA at the fork to Cdc13 promotes telomerase activity. (C) Elg1 interacts with Stn1, which could be SUMOylated. Cdc13 becomes SUMOylated. Elg1 unloads PCNA and leaves telomeres. (D) Stn1 is now able to interact with Cdc13, evicting Est1 and terminating telomerase activity.

Author response image 1

Tables

Table 1
Summary of all yeast two-hybrid (YTH) interactions presented.
StrainPlasmidInteraction w/Stn1Interaction w/Cdc13
Wild typeElg1-NTDYesYes
Wild typeElg1-simNoYes
siz1Δ siz2ΔElg1-NTDNoNo
pol30-RRElg1-NTDYesNo
elg1ΔElg1-NTDYesNo
elg1-simElg1-NTDYesYes
elg1-DDElg1-NTDYesNo
elg1-sim+DDElg1-NTDYesNo
elg1-WalkerAElg1-NTDYesNo
cdc13-snmElg1-NTDYesYes
Wild typeElg1-NTD-snm: no
  1. elg1-sim: mutation in the SUMO-interacting motif of Elg1; elg1-DD: TT386/7DD; elg1-sim+DD: combination of mutations in the SIM and in TT386/7; elg1-WalkerA: mutation that eliminates ATPase and unloading activity of Elg1. cdc13-snm: allele of Cdc13 that cannot be SUMOylated.

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Recombinant DNA reagentpGBD424Takahashi et al., 2020Empty yeast two-hybrid vector
Recombinant DNA reagentpGBD424-Pol30Takahashi et al., 2020Overexpresses wt PCNA
Recombinant DNA reagentpGBD424-Pol30-RRTakahashi et al., 2020Overexpresses unmodifiable PCNA
Recombinant DNA reagentpGBD424-ubiquitin-Pol30-RRTakahashi et al., 2020Overexpresses unmodifiable PCNA fused to ubiquitin
Recombinant DNA reagentpGBD424-SUMO-Pol30-RRTakahashi et al., 2020Overexpresses unmodifiable PCNA fused to SUMO
Recombinant DNA reagentpGBU9Parnas et al., 2010Yeast two-hybrid vector
Strain, strain background (Saccharomyces cerevisiae MATa strain)PJ69-4AJames et al., 1996Yeast two-hybrid strain
Chemical compound, drugAlpha FactorSigma-AldrichT6901
Commercial assay or kitProtein A sepharose beadsSigma-Aldrich17-1279-01
Commercial assay or kitProtein G sepharose beadsSigma-Aldrich17-0618-01
Chemical compound, drugPronaseSigma-AldrichP5147
AntibodyAnti-HA (mouse polyclonal)Santa Cruz Biotechnologysc73921:1000
AntibodyAnti-Myc (mouse polyclonal)Santa Cruz Biotechnology9E10, SC-401:1000
Table 2
Yeast strains used in this study.
Strain numberNameGenotype
13237BY4741MATa his3del, leu2del, met15del, ura3del
12480BY elg1Δ::HygMXMATa his3del, leu2del, met15del, ura3del, elg1::HYG
14421BY pol30-K127RMATa his3del, leu2del, met15del, ura3del, pol30-K127R::LEU2
14425BY pol30-K164RMATa his3del, leu2del, met15del, ura3del, pol30-K164R::LEU2
14423BY pol30-KK127,164RRMATa his3del, leu2del, met15del, ura3del, pol30-RR::LEU2
14426BY pol30-K127R elg1ΔMATa his3del, leu2del, met15del, ura3del, pol30-K127R::LEU2, elg1::HYG
14430BY pol30-K164R elg1ΔMATa his3del, leu2del, met15del, ura3del, pol30-K164R::LEU2, elg1::HYG
14428BY pol30-KK127,164RR elg1ΔMATa his3del, leu2del, met15del, ura3del,pol30-RR::LEU2,elg1::HYG
14398BY rad18Δ:: KanMXMATa his3del, leu2del, met15del, ura3del, rad18::KanMX.
14401BY rad18D::KanMX elg1D::HygMXMATa his3del, leu2del, met15del, ura3del, rad18::KanMX, elg1::HYG
19606BY pol30-KK127,164RR Elg1-HAMATa his3del, leu2del, met15del, ura3del ELG1-HA-NAT pol30-KK127,164RR:HIS3
20622BY bar1 CDC13-HA ELG1-HAMATa his3del, leu2del, met15del, ura3del, bar1::LEU2, CDC13:3HA:HISMX, ELG1-HA-KanMX
18418BY STN1-Myc Elg1-HAMATa his3del, leu2del, met15del, ura3del stn1::HYG CEN LEU2 STN1-(G)9-(myc)7 ELG1-HA-KanMx
18790BY bar1 STN1-Myc ELG1-HA POL3-FLAGMATa his3del, leu2del, met15del, ura3del bar1::NatMX stn1::HYG CEN LEU2 STN1-(G)9-(myc)7 ELG1-HA-KanMx POL3-FLAG-URA3
19552BY bar1 CDC13-HA POL30-FLAGMATa his3del, leu2del, met15del ura3del, bar1:: NatMX CDC13-3HA::HISMX, POL30-FLAG::KanMX,
20625BY CDC13-HA STN1-MycMATa his3del, leu2del, met15del, ura3del, CDC13-3HA::HISMX, stn1::HYG CEN LEU2 STN1-(G)9-(myc)7,
20626BY CDC13-HA STN1-Myc elg1DMATa his3del, leu2del, met15del, ura3del,CDC13-3HA::HISMX, stn1::HYG,CEN LEU2 STN1-(G)9-(myc)7,elg1::KanMx
20623BY TEN1-FLAGMATa his3del, leu2del, met15del, ura3del trp1del Lys2del can1:: STE2pr-Sp_HIS5 ten1::KanMX, Elg1-HA-NAT CEN URA3 TEN1-(G)8-(FLAG)3
17611W303-1aMATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100
9842W303 elg1Δ::HygMXMATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100, elg1::KanMx
9551W303 stn1-13MATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100, stn1-13
9848W303 elg1Δ::HygMX stn1-13MATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100 elg1::KanMx, stn1-13
12357W303 stn1-164MATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100, stn1Δ::Hyg+pRS-stn1-L164A (pVL3571)
12358W303 stn1-164 elg1Δ: KanMXMATa leu2-3, 112 ura3-1 his3-11,15, trp1-1, ade2-1, can1- 100, elg1::KanMx, stn1Δ::Hyg+pRS-stn1-L164A (pVL3571)
12062PJ69-4MAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ
15017PJ elg1DMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ elg1::HYG
19774PJ siz1 siz2MAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ siz1::KanMX siz2::HYG
11069PJ pol30-RRMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ POL30-RR:: leu2:: KANMX
20624PJ STN1-MycMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ elg1-sim::KanMx, stn1::HYG,CENLEU2 STN1-(G)9-(myc)7
19916PJ elg1-sim-MycMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ elg1-SIM-MYC-KANMX
18798PJ elg1-DDMycMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ elg1-DD-MYC-KANMX
19917PJ elg1-DD+sim-MycMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ elg1-DDsim-MYC-KANMX
19915PJ elg1-Walker AMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ, elg1 KK343/4DD:MYC:KanMX
19486PJ cdc13-snmMAT@ trp1-901 leu2-3,112 ura3-52 his3-200 gal4del gal80del GAL2-ADE2 LYS2:: GAL1-HIS3 met2::GAL7-lacZ cdc13-snm
Table 3
Plasmids used in this study.
Strain numberGenotypeSource or reference
4239pGad424 (LEU2)Kupiec lab
4238pGad424-POL30Helle Ulrich lab
4237pGad424-pol30-k127r,k164rHelle Ulrich lab
4236pGad424-pol30-k127r,k164r-SMT3Helle Ulrich lab
4235pGAD424-pol30-k127r,k164r-UBIHelle Ulrich lab
4147CEN LEU2 STN1-(G)9-(myc)7Victoria Lundblad lab
4144CEN URA3 TEN1-(G)8-(FLAG)3Victoria Lundblad lab
2201pCN181 pACT2-STN1 (LEU2)Constance Nugent lab
2205pVL855 pACT2-CDC13Constance Nugent lab
2168pACT2 - TEN1Michel Charbonneau lab
1775pGBU9 (URA3)Kupiec lab
1973pGBU9-ELG1-NTD(1-234)This study
3301pGBU9-ELG1-CTD(541-791)This study
2260pGBU9-ELG1-NTDsim(1-234)This study
2241pGBU9-SMT3This study
2419pGAD424-Stn1-Nt(1-282)David Shore lab
2420pGAD424-Stn1-Ct(282-494)David Shore lab
2169pGAD424-Stn1-13Michel Charbonneau lab
2418pGAD424-Stn1-63David Shore lab
4287pACT-cdc13-snmThis study

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pragyan Singh
  2. Inbal Gazy
  3. Martin Kupiec
(2023)
Control of telomere length in yeast by SUMOylated PCNA and the Elg1 PCNA unloader
eLife 12:RP86990.
https://doi.org/10.7554/eLife.86990.3