Adulis and the transshipment of baboons during classical antiquity

  1. Franziska Grathwol
  2. Christian Roos
  3. Dietmar Zinner
  4. Benjamin Hume
  5. Stéphanie M Porcier
  6. Didier Berthet
  7. Jacques Cuisin
  8. Stefan Merker
  9. Claudio Ottoni
  10. Wim Van Neer
  11. Nathaniel J Dominy
  12. Gisela H Kopp  Is a corresponding author
  1. University of Konstanz, Germany
  2. German Primate Center, Germany
  3. Université Paul-Valéry Montpellier, France
  4. Musée des Confluences, France
  5. Muséum National d'Histoire Naturelle, France
  6. State Museum of Natural History Stuttgart, Germany
  7. University of Rome Tor Vergata, Italy
  8. Royal Belgian Institute of Natural Sciences, Belgium
  9. Dartmouth College, United States

Abstract

Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers--Agatharchides of Cnidus, Pliny the Elder, Strabo-noted the value of Adulis to Greco--Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud ('Valley of the Monkeys'), Egypt. Dated to ca. 800-540 BCE, these animals could extend the antiquity of Egyptian-Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable istope analysis to show that two New Kingdom specimens of P. hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of Papio hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.

Data availability

Raw sequencing data are deposited in the European Nucleotide Archive (ENA, project accession no. PRJEB60261), mitochondrial genomes on Genbank (accession numbers: OQ538075-OQ538089). Code used for data processing and analysis is available on OSF via https://doi.org/10.17605/OSF.IO/D5GX3.

The following data sets were generated

Article and author information

Author details

  1. Franziska Grathwol

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Roos

    Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0190-4266
  3. Dietmar Zinner

    Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3967-8014
  4. Benjamin Hume

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Stéphanie M Porcier

    Laboratoire CNRS ASM (UMR 5140), Université Paul-Valéry Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Didier Berthet

    Musée des Confluences, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacques Cuisin

    Muséum National d'Histoire Naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan Merker

    Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Claudio Ottoni

    Department of Biology, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Wim Van Neer

    Royal Belgian Institute of Natural Sciences, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1710-3623
  11. Nathaniel J Dominy

    Departments of Anthropology and Biological Sciences, Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-418X
  12. Gisela H Kopp

    Department of Biology, University of Konstanz, Konstanz, Germany
    For correspondence
    gisela.kopp@uni-konstanz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-3264

Funding

Universität Konstanz (Young Scholar Fund)

  • Gisela H Kopp

Deutsche Forschungsgemeinschaft (Centre of Excellence 2117 Centre for the Advanced Study of Collective Behaviour" ID: 422037984")

  • Gisela H Kopp

Universität Konstanz (Zukunftskolleg)

  • Nathaniel J Dominy
  • Gisela H Kopp

Max-Planck-Gesellschaft (Open Access Fund)

  • Gisela H Kopp

Hector Stiftung II (Hector Pioneer Fellowship)

  • Gisela H Kopp

Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften (Die Junge Akademie)

  • Gisela H Kopp

Bundesministerium für Bildung und Forschung (Excellence Strategy of the German Federal and State Governments)

  • Benjamin Hume
  • Gisela H Kopp

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (bwHPC)

  • Franziska Grathwol
  • Benjamin Hume
  • Gisela H Kopp

Deutsche Forschungsgemeinschaft (INST 37/935- 1 FUGG)

  • Franziska Grathwol
  • Benjamin Hume
  • Gisela H Kopp

Agence Nationale de la Recherche (ANR-11-LABX-0032-01)

  • Stéphanie M Porcier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Grathwol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,769
    views
  • 405
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Franziska Grathwol
  2. Christian Roos
  3. Dietmar Zinner
  4. Benjamin Hume
  5. Stéphanie M Porcier
  6. Didier Berthet
  7. Jacques Cuisin
  8. Stefan Merker
  9. Claudio Ottoni
  10. Wim Van Neer
  11. Nathaniel J Dominy
  12. Gisela H Kopp
(2023)
Adulis and the transshipment of baboons during classical antiquity
eLife 12:e87513.
https://doi.org/10.7554/eLife.87513

Share this article

https://doi.org/10.7554/eLife.87513

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.

    1. Ecology
    Chao Wen, Yuyi Lu ... Lars Chittka
    Research Article

    Bumblebees (Bombus terrestris) have been shown to engage in string-pulling behavior to access rewards. The objective of this study was to elucidate whether bumblebees display means-end comprehension in a string-pulling task. We presented bumblebees with two options: one where a string was connected to an artificial flower containing a reward and the other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling connected strings over interrupted ones after training with a stepwise pulling technique. When exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected string. This suggests that bumblebees engage in featural generalization of the visual display of the string connected to the flower in this task. If the view of the string connected to the flower was restricted during the training phase, the proportion of bumblebees choosing the connected strings significantly decreased. Similarly, when the bumblebees were confronted with coiled connected strings during the testing phase, they failed to identify and reject the interrupted strings. This finding underscores the significance of visual consistency in enabling the bumblebees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish between continuous strings and interrupted strings relies on a combination of image matching and associative learning, rather than means-end understanding. These insights contribute to a deeper understanding of the cognitive processes employed by bumblebees when tackling complex spatial tasks.