Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG

  1. Brandon H Hayes
  2. Mai Wang
  3. Hui Zhu
  4. Steven H Phan
  5. Lawrence J Dooling
  6. Jason C Andrechak
  7. Alexander H Chang
  8. Michael P Tobin
  9. Nicholas M Ontko
  10. Tristan Marchena
  11. Dennis E Discher  Is a corresponding author
  1. Physical Sciences Oncology Center at Penn, University of Pennsylvania, United States
  2. Molecular and Cell Biophysics Lab, University of Pennsylvania, United States
  3. Bioengineering Graduate Group, University of Pennsylvania, United States
8 figures, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
MPS1 kinase inhibition (MPS1i)-induced chromosomal instability generates microenvironment conditions that skew toward anti-cancer M1-like macrophages relative to a pro-cancer M2-like phenotype.

(A) Schematic for treatment of B16F10 mouse melanoma cells with MPS1 inhibitors (MPS1i), such as reversine, or the equivalent volume of DMSO vehicle control. After 24 hr, cells were washed twice …

Figure 1—figure supplement 1
Characterization of MPS1 kinase inhibition (MPS1i)-induced genome and chromosomal instability in B16F10 mouse melanoma.

(A) Quantification of micronuclei induced by different MPS1 inhibitors (AZ3146, BAY 1217389, and reversine) at different concentrations. Statistical significance was calculated by ordinary one-way …

Figure 2 with 4 supplements
Chromosomally unstable tumoroids and tumors in early stages show increased anti-cancer macrophage polarization and activity.

(A) Schematic for ‘immuno-tumoroids’. Tumoroids are formed with B16F10 cells on non-adhesive, U-bottom-shaped wells and after pre-treating with either MPS1 kinase inhibition (MPS1i) (reversine) or …

Figure 2—figure supplement 1
Characterization of MPS1 kinase inhibition (MPS1i)-induced genome and chromosomal instability in B16F10 mouse melanoma.

(A) Flow cytometry analysis of CD47 and Tyrp1 expression on B16F10 mouse melanoma cells. Representative histograms for anti-CD47 (left) and anti-Tyrp1 (right) binding to B16F10 CD47 knockout (KO) …

Figure 2—figure supplement 2
Macrophages readily clear chromosomal instability (CIN)-afflicted tumoroids but only if CIN is accompanied by proliferation deficits.

(A) Timeline and schematic for generating engineered ‘immuno-tumoroids’ for time-lapsed studies of macrophage-mediated phagocytosis of cancer cells. Tumoroids are formed by plating and culturing …

Figure 2—figure supplement 3
Flow cytometry gating strategy for identification and quantification of macrophage infiltrate and characterization in chromosomal instability (CIN)-afflicted and chromosomally stable B16F10 tumors.

Representative flow cytometry gating strategy for in vivo B16F10 CD47 knockout (KO) tumor immune infiltrate five days after initial challenge. Tumors were comprised of cells treated with either (A) …

Figure 2—figure supplement 4
MPS1 kinase inhibition (MPS1i)-induced chromosomal instability upregulates MHC-1 class molecules on B16F10, suggesting increased antigen presentation.

Flow cytometry analysis and quantification of H-2Kb expression on B16F10 mouse melanoma cells. B16F10 cells were treated with MPS1i or the equivalent volume of DMSO vehicle control. Concentrations …

Figure 3 with 1 supplement
MPS1 kinase inhibition (MPS1i)-induced chromosomally unstable cancer cells are maximally cleared when IgG-opsonized and depleted of the CD47 macrophage checkpoint.

(A) Timeline for in vitro treatment of B16F10 cells prior to injection in mice and then subsequent therapeutic treatment for tumor-challenged mice. Prior to tumor inoculation, B16F10 CD47 knockout …

Figure 3—figure supplement 1
MPS1 kinase inhibition (MPS1i)-induced chromosomal instability (CIN) favors clearance when paired with CD47 knockout (KO) and IgG opsonization, regardless of the degree of CIN.

Tumor growth curve of projected tumor area versus days after tumor challenge, with B16F10 CD47 KO cells. Each line represents a separate tumor and is fit with an exponential growth equation: A = A0ek…

Figure 4 with 3 supplements
MPS1 kinase inhibition (MPS1i)-induced chromosomal instability favors induction of pro-phagocytic de novo IgG and can lead to durable acquired immunity.

(A) Schematic for sera collection from surviving mice from Figure 3C and D and follow-up experiments to characterize any de novo anti-cancer IgG antibodies and their functionality in vitro and in …

Figure 4—figure supplement 1
Survivors challenged with chromosomal instability (CIN)-afflicted tumors generate anti-cancer IgG, regardless of the degree of CIN.

(A) Median fluorescence intensity quantification of IgG2a/c and IgG2b binding from sera from surviving mice with different degrees of CIN by titrating reversine concentration used to treat B16F10 …

Figure 4—figure supplement 2
Flow cytometry gating strategy for identification and quantification of immune infiltrate and characterization in re-challenge experiments.

Representative flow cytometry gating strategy for in vivo B16F10 CD47 knockout (KO) tumor immune infiltrate from second challenge non-survivors and age-matched naïve controls. Singlets were …

Figure 4—figure supplement 3
Growth of chromosomal instability (CIN)-afflicted wild-type (WT) tumors in T- and B-cell deficient mice and T- and B-cell replete mice.

Similar growth delays are found for MPS1 kinase inhibition (MPS1i)-pre-treated B16F10 cells in T- and B-cell deficient NSG mice and immunocompetent C57BL/6 mice. Both types of mice have functional …

Author response image 1
Author response image 2
Author response image 3
Author response image 4
Growth of CIN-afflicted wild-type (WT) tumors in T- and B-cell deficient mice and T- and B-cell replete mice.

Similar growth delays for MPS1i-pretreated B16F10 cells in T- and B-cell deficient NSG mice and immunocompetent C57BL/6 mice. Both types of mice have functional macrophages. Parallel studies in vivo …

Tables

Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background Mus musculusC57BL/6JJackson LaboratoryStock# 000664; RRID:IMSR_JAX:000664Sex: Male (because B16 cell line is male derived)
Strain, strain background Mus musculus (male)NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJPerelman School of Medicine Stem Cell Xenograft CoreRRID:SCR_010035Sex: Male
Cell line (Mus musculus)B16F10ATCCCat# CRL-6475; RRID:CVCL_0159Mouse melanoma
Cell line (Mus musculus)B16F10 CD47 KOPMID: 31964705CD47 KOHayes et al., 2020
Cell line (Mus musculus)B16F10 sgCtrlPMID: 31964705sgCtrlHayes et al., 2020
Biological sample (Mus musculus)C57BL/6J bone marrow cellsThis paperFlushed from femurs, tibias; differentiation into bone marrow-derived macrophages (BMDMs) or adoptive transfer
Biological sample (Mus musculus)C57BL/6J serumThis paperRetro-orbital blood collected from convalescent or naïve mice, clotted for 1 hr, separated by centrifugation
AntibodyInVivoMab mouse anti-human/mouse Tryp1 (clone TA99)BioXCellCat# BE0151; RRID:AB_10949462(1:1000) Opsonization (10–20 μg/mL)
In vivo (250 μg/100 μL per dose)
AntibodyInVivoMab mouse IgG2a isotype control (clone C1.18.4)BioXCellCat# BE0085; RRID:AB_1107771(1:1000) (10–20 μg/mL)
In vivo (250 μg/100 μL per dose)
AntibodyUltra-LEAF rat anti-mouse SIRPα (clone P84)BioLegendCat# 144036; RRID:AB_2832517Blockade (18 μg/mL=1:50)
AntibodyInVivoMab rat anti-mouse CD47 (clone MIAP301)BioXCellCat# BE0270; RRID:AB_2687793(1:500) Flow cytom. (20 μg/mL)
AntibodyAlexa Fluor 647 anti-mouse IgG [H+L] (donkey polyclonal)Thermo Fisher InvitrogenCat# A-31571; RRID:AB_162542Flow cytom. (10 μg/mL=1:200)
AntibodyAlexa Fluor 647 anti-rat IgG [H+L] (goat polyclonal)Thermo Fisher InvitrogenCat# A-21247; RRID:AB_141778Flow cytom. (10 μg/mL=1:200)
AntibodyHorse radish peroxidase sheep anti-mouse [H+L], polyclonalGE Life SciencesCat# NA931VWB (1:500)
AntibodyMouse anti-β-actin (clone C4)Santa CruzCat# sc47778; RRID:AB_626632WB (1:1000)
AntibodyBrilliant Violet 650 rat anti-mouse CD45 (clone 30-F11)BioLegendCat# 103151; RRID:AB_2565884Flow cytom. (2.5 µg/mL=1:80)
AntibodyBrilliant Violet 785 rat anti-mouse CD45 (clone 30-F11)BioLegendCat# 103149; RRID:AB_2564590Flow cytom. (5 µg/mL=1:40)
AntibodyAPC/Cyanine7 rat anti-mouse CD45 (clone 30-F11)BioLegendCat# 103115; RRID:AB_312980Flow cytom. (2.5 µg/mL=1:80)
AntibodyAPC rat anti-mouse/human CD11b (clone M1/70)BioLegendCat# 101212; RRID:AB_312795Flow cytom. (2.5 µg/mL=1:80)
AntibodyPE/Cyanine7 rat anti-mouse/human CD11b (clone M1/70)BioLegendCat# 101216; RRID:AB_312799Flow cytom. (2.5 µg/mL=1:80)
AntibodyPE/Dazzle 594 rat anti-mouse Ly6G (clone 1A8)BioLegendCat# 127647; RRID:AB_2566318Flow cytom. (5 µg/mL=1:40)
AntibodyPerCP rat anti-mouse Ly6G (clone 1A8)BioLegendCat# 127653; RRID:AB_2616998Flow cytom. (2.5 µg/mL=1:80)
AntibodyPE rat anti-mouse F4/80 (clone BM8)BioLegendCat# 123110; RRID:AB_893486Flow cytom. (10 µg/mL=1:20)
AntibodyBrilliant Violet 605 rat anti-mouse Ly-6C (clone HK1.4)BioLegendCat# 128035 RRID:AB_2562352Flow cytom (5 µL/100 µL=1:20)
AntibodyAPC rat anti-mouse I-A/I-E (clone M5/114.15.2)BioLegendCat# 107614; RRID:AB_313329Flow cytom. (2.5 µg/mL=1:80)
AntibodyPacific Blue rat anti-mouse CD86 (clone GL-1)BioLegendCat# 105022; RRID:AB_493466Flow cytom. (10 µg/mL=1:50)
AntibodyAPC/Cyanine7 rat anti-mouse CD86 (clone GL-1)BioLegendCat# 105029; RRID:AB_2074993Flow cytom. (2.5 µg/mL=1:80)
AntibodyAPC rat anti-mouse CD206 (clone C068C2)BioLegendCat# 141707; RRID:AB_10896057Flow cytom. (5 µg/mL=1:40)
AntibodyBrilliant Violet 421 rat anti-mouse CD206 (clone C068C2)BioLegendCat# 141717; RRID:AB_2562232Flow cytom. (5 µL/100 µL=1:20)
AntibodyPE/Cyanine7 rat anti-mouse CD163 (clone S15049F)BioLegendCat# 156707; RRID:AB_2910324Flow cytom. (2.5 µg/mL=1:80)
AntibodyAPC/Cyanine7 Armenian hamster anti-mouse CD3e (clone 145-2C11)BioLegendCat# 100329; RRID:AB_1877171Flow cytom. (5 µg/mL=1:40)
AntibodyAlexa Fluor 647 rat anti-mouse CD8a (clone 53-6.7)BioLegendCat# 100727; RRID:AB_493424Flow cytom. (2.5 µg/mL=1:200)
AntibodyAPC mouse anti-mouse H-2kb/H-2Db (clone 28-8-6)BioLegendCat# 114613; RRID:AB_2750193Flow cytom. (5 µg/mL=1:40)
AntibodyPE rat anti-mouse IgG2a (clone RMG2a-62)BioLegendCat# 407108; RRID:AB_10549974Flow cytom. (5 µg/mL=1:40)
AntibodyAPC rat anti-mouse IgG2b (clone RMG2b-1)BioLegendCat# 406711; RRID:AB_2750277Flow cytom. (2.5 µg/mL=1:80)
AntibodyTruStain FcX PLUS rat anti-mouse CD16/32 (clone S17011E)BioLegendCat# 156603; RRID:AB_2783137Flow cytom. Fc block (2.5 µg/mL=1:200)
Peptide, recombinant proteinMacrophage colony-stimulating factor (M-CSF)BioLegendCat# 576406BMDM differentiation (20 ng/mL)
Commercial assay or kitVybrant CFDA-SE Cell TraceThermo Fisher InvitrogenCat# V12883
Commercial assay or kitCellTracker DeepRedThermo Fisher InvitrogenCat# C34565
Commercial assay or kitNEBNext Ultra II RNA Library Prep KitNEBCat# E7770S
Sequence-based reagentNEBNext Multiplex Oligos for IlluminaNEBCat# E7335
Commercial assay or kitChromium Single Cell Gene Expression kit10x GenomicsCat# PN-1000128; Cat# PN-1000127; Cat# PN-1000213
Chemical compound, drugReversineCayman ChemicalCat# 10004412MPS1 inhibitor
Chemical compound, drugAZ3146Cayman ChemicalCat# 19991MPS1 inhibitor
Chemical compound, drugBAY 12-17389Selleck ChemicalsCat# S8215MPS1 inhibitor
Software, algorithmPrism v9.4GraphPadRRID:SCR_002798
Software, algorithmFCS Express 7De Novo Software
OtherAnti-adherence rinsing solutionStemCell TechnologiesCat# 07010Surface treatment for tumoroid studies
OtherACK lysing bufferThermo Fisher GibcoCat# A1049201Bone marrow and tumor red blood cell lysis
OtherDispaseCorningCat# 354235Tumor disaggregation
OtherDNAse IMillipore SigmaCat# 101041159001Tumor disaggregation
OtherCollagenase type IVThermo Fisher GibcoCat# 17104-019Tumor disaggregation (4 mg/mL)

Additional files

Download links