The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent

Abstract

Caloric restriction (CR) is a nutritional intervention that reduces the risk of age-related diseases in numerous species, including humans. CR's metabolic effects, including decreased fat mass and improved insulin sensitivity, play an important role in its broader health benefits. However, the extent and basis of sex differences in CR's health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young female mice. Females' resistance to fat and weight loss was associated with decreased lipolysis, lower systemic energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis compared to males. Positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) showed that peripheral glucose uptake was comparable between sexes. Instead, the sex differences in glucose homeostasis were associated with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity but higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, thereby stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis to a similar extent in both sexes. Finally, in a cohort of overweight and obese humans CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR's metabolic benefits. These findings have important implications for understanding the interplay between diet and health and for maximising the benefits of CR in humans.

Data availability

All source data and code from which the figures are based is available through University of Edinburgh DataShare at https://doi.org/10.7488/ds/3758. Any other relevant data are available from the authors upon reasonable request.

The following data sets were generated

Article and author information

Author details

  1. Karla J Suchacki

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin J Thomas

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshiko Matsumoto Ikushima

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kuan-Chan Chen

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Claire Fyfe

    Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Adriana AS Tavares

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard J Sulston

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrea Lovdel

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Holly J Woodward

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Xuan Han

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Domenico Mattiucci

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Eleanor J Brain

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Carlos Jose Alcaide-Corral

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3002-0649
  14. Hiroshi Kobayashi

    Department of Stem Cell Biology, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Gillian Gray

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3104-3305
  16. Phillip D Whitfield

    Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Roland H Stimson

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9002-6188
  18. Nicholas M Morton

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8218-8462
  19. Alexandra M Johnstone

    Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5484-292X
  20. William P Cawthorn

    Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    W.Cawthorn@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7832-5057

Funding

Medical Research Council (MR/M021394/1)

  • William P Cawthorn

British Heart Foundation (RG/16/10/32375)

  • Adriana AS Tavares

British Heart Foundation (FS/19/34/34354)

  • Adriana AS Tavares

British Heart Foundation (4-year PhD studentship)

  • Benjamin J Thomas
  • Richard J Sulston

Carnegie Trust for the Universities of Scotland (RIG007416)

  • William P Cawthorn

Wellcome Trust (221295/Z/20/Z)

  • Adriana AS Tavares

Chief Scientist Office (SCAF/17/02)

  • Roland H Stimson

Scottish Government (RESAS Strategic Research Programme)

  • Claire Fyfe

British Heart Foundation (RE/13/3/30183)

  • Adriana AS Tavares

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Studies in C57BL/6NCrl and C57BL/6JCrl mice were approved by the University of Edinburgh Animal Welfare and Ethical Review Board and were done under project licenses granted by the UK Home Office (project license numbers 708617 and PP2299608).

Human subjects: Written, informed consent was obtained, and the study was reviewed by the NHS North of Scotland Research Ethics Service (ethics number 09/S0801/80).

Version history

  1. Preprint posted: February 22, 2022 (view preprint)
  2. Received: March 24, 2023
  3. Accepted: March 26, 2023
  4. Accepted Manuscript published: April 25, 2023 (version 1)
  5. Version of Record published: May 9, 2023 (version 2)

Copyright

© 2023, Suchacki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,342
    views
  • 759
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karla J Suchacki
  2. Benjamin J Thomas
  3. Yoshiko Matsumoto Ikushima
  4. Kuan-Chan Chen
  5. Claire Fyfe
  6. Adriana AS Tavares
  7. Richard J Sulston
  8. Andrea Lovdel
  9. Holly J Woodward
  10. Xuan Han
  11. Domenico Mattiucci
  12. Eleanor J Brain
  13. Carlos Jose Alcaide-Corral
  14. Hiroshi Kobayashi
  15. Gillian Gray
  16. Phillip D Whitfield
  17. Roland H Stimson
  18. Nicholas M Morton
  19. Alexandra M Johnstone
  20. William P Cawthorn
(2023)
The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent
eLife 12:e88080.
https://doi.org/10.7554/eLife.88080

Share this article

https://doi.org/10.7554/eLife.88080

Further reading

    1. Medicine
    Peigen Chen, Haicheng Chen ... Xing Yang
    Research Article

    Caesarean section scar diverticulum (CSD) is a significant cause of infertility among women who have previously had a Caesarean section, primarily due to persistent inflammatory exudation associated with this condition. Even though abnormal bacterial composition is identified as a critical factor leading to this chronic inflammation, clinical data suggest that a long-term cure is often unattainable with antibiotic treatment alone. In our study, we employed metagenomic analysis and mass spectrometry techniques to investigate the fungal composition in CSD and its interaction with bacteria. We discovered that local fungal abnormalities in CSD can disrupt the stability of the bacterial population and the entire microbial community by altering bacterial abundance via specific metabolites. For instance, Lachnellula suecica reduces the abundance of several Lactobacillus spp., such as Lactobacillus jensenii, by diminishing the production of metabolites like Goyaglycoside A and Janthitrem E. Concurrently, Clavispora lusitaniae and Ophiocordyceps australis can synergistically impact the abundance of Lactobacillus spp. by modulating metabolite abundance. Our findings underscore that abnormal fungal composition and activity are key drivers of local bacterial dysbiosis in CSD.

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.