BATF relieves hepatic steatosis by inhibiting PD1 and promoting energy metabolism

  1. Zhiwang Zhang
  2. Qichao Liao
  3. Tingli Pan
  4. Lin Yu
  5. Zupeng Luo
  6. Songtao Su
  7. Shi Liu
  8. Menglong Hou
  9. Yixing Li
  10. Turtushikh Damba
  11. Yunxiao Liang
  12. Lei Zhou  Is a corresponding author
  1. Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, China
  2. College of Animal Science and Technology, Guangxi University, China
  3. School of Pharmacy, Mongolian National University of Medical Sciences, Mongolia
8 figures, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Effects of BATF on lipid deposition in hepatocytes under high-fat diet.

(A) The mice and liver Oil red O staining in normal diet group (CN) and high-fat diet group (HFD). Bar, 1 cm (left panel) and 100 μm (right panel). (B) The protein expression of BATF in liver tissues (n=4). (C) The mRNA expression of BATF in liver tissues (n=5). (D) Spearman correlation Analysis between TPM of BATF and NAFLD Patients with Different Degrees (n=4–18). (E) Triglyceride content (n=5). (F) Detection of BATF overexpression in HepG2 (n=2). (G) Oil red O staining of HepG2 cells with OA/PA when BATF was overexpressed and (H) triglyceride content (n=4). (I) Oil red O staining of L02 cells with OA/PA when BATF was overexpressed and (J) triglyceride content (n=3). (K) Oil red O staining of primary hepatocytes with OA/PA when BATF was overexpressed and (L) triglyceride content (n=3). The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 1—source data 1

Effects of BATF on lipid deposition in hepatocytes under high-fat diet.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig1-data1-v1.zip
Figure 1—figure supplement 1
Effects of BATF on lipid levels in hepatocytes.

(A) Triglyceride content with OA/PA (n=3). (B) BATF mRNA levels. NC, negative control group; siBATF, BATF inhibition group, (n=3). (C) Triglyceride content with OA/PA treatment, (n=5). (D) Triglyceride content with OA/PA when BATF was overexpressed, (n=3). The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 1—figure supplement 1—source data 1

Effects of BATF on lipid levels in hepatocytes.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig1-figsupp1-data1-v1.zip
Figure 2 with 1 supplement
Effects of BATF on hepatic fat deposition in mice.

(A) Experimental designs illustration of mice. (B) Expression of BATF protein in liver (n=4). (C) Densitometric quantification of the blotting. (D) Expression of BATF protein in various tissues of HFD-CN mice HBAAV/8-ZsGreen, WB in lane1, 3, 5, 7, 9 and HFD-BATF mice HBAAV2/8-CMV-m-BATF-3×flag-ZsGreen, WB in lane 2, 4, 6, 8, 10. (E) Densitometric quantification of the blotting. (F) Mice bodyweight (n=8–10). (G) Mice fat ratio (n=8–10). (H) Mice liver. Bar, 1 cm. (I) HE staining of mice liver sections. Bar, 100 μm. (J) (K) Oil red O staining of mice liver sections and quantitative analysis. Bar, 100 μm (n=3). (L) Liver triglyceride levels (n=8–10). (M) Liver total Glycerin levels (n=8–10).

Figure 2—source data 1

Effects of BATF on hepatic fat deposition in mice.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig2-data1-v1.zip
Figure 2—figure supplement 1
The effect of BATF on metabolic indicators in mice.

(A) Average daily feed intake (n=7). (B) Liver total cholesterol levels (n=8–10). (C) Fasting blood glucose level in mice (n=8–10). (D) Liver glucose oxidase activity. (E) Glucose tolerance test and (F) quantitative analysis (n=5–6). The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 2—figure supplement 1—source data 1

The effect of BATF on metabolic indicators in mice.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig2-figsupp1-data1-v1.zip
BATF boosts lipid breakdown and energy metabolism in mice livers.

(A) ALT activity in mice liver (n=8). (B) AST activity in mice liver (n=7). (C) The Fasn, Srebp1, Gpam, Acc1 mRNA expression level in mice liver (n=6–8). (D) The AMPKα1, Aco, Acox1, Bcl2, Cpt1, Hsl, Acc2, Atgl mRNA expression level in mice liver (n=6–7). (E) SCAD activity in HepG2 cells with OA/PA treatment (n=4). (F) ATP content in HepG2 cells with OA/PA treatment (n=4). (G) Oxygen consumption rate (OCR). (H) Basal respiration, maximal respiration, proton leak and coupling efficiency. The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 3—source data 1

BATF boosts lipid breakdown and energy metabolism in mice livers.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig3-data1-v1.zip
BATF alleviates HFD-induced adipocyte hypertrophy in mice.

(A) CT images of fat axial view. (B) eWAT of mice. Bar, 1 cm. (C) eWAT weight / bodyweight (n=9–10). (D) iWAT of mice. Bar, 1 cm. (E) eWAT weight / bodyweight (n=9–10). (F) HE staining of eWAT, (G) adipocyte diameter and (H) cell area. Bar, 200 μm. (I) HE staining of iWAT, (J) adipocyte diameter and (K) cell area. Bar, 200 μm. (L) Triglyceride content of undifferentiated 3T3L1 cells (n=5). (M) Triglyceride content of differentiated 3T3L1 cells (n=3–4). (N) The mRNA expression of IL27 in liver tissues (n=5). The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 4—source data 1

BATF alleviates HFD-induced adipocyte hypertrophy in mice.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig4-data1-v1.zip
BATF alleviates hepatocyte lipid accumulation by inhibiting PD1.

(A) The mRNA expression of PD1 in liver tissues (n=3). (B) The mRNA expression of PD1 in HepG2 cells (n=3). (C) Oil red O staining of HepG2 cells, Bar, 20 μm, (n=3). (D), (E), (F) Triglyceride content with OA/PA (n≥3). (G) Dual luciferase assay on Hepa1-6 cells cotransfected with firefly luciferase constructs containing the PD1 promoter, Renilla luciferase vector pRL-TK and pcDNA3.1(-) or pcDNA3.1(-)-BATF, (n≥3). (H) The Mechanism diagram of BATF alleviates hepatocyte lipid accumulation by PD1. The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 5—source data 1

BATF alleviates hepatocyte lipid accumulation by inhibiting PD1.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig5-data1-v1.zip
Effects of PD1 antibody on liver lipid metabolism in HFD mice.

(A) Mice bodyweight (n≥5). (B) The mice were injected with IgG or PD1 antibody under HFD (n≥5). (C) Mice fat ratio (n≥5). (D) eWAT of mice. Bar, 1 cm. (E) eWAT weight / bodyweight (n≥5). (F) iWAT of mice. Bar, 1 cm. (G) eWAT weight / bodyweight (n≥5). (H) The liver of mice. (I) HE staining of mice liver sections. Bar, 100 μm. (J) Liver triglyceride (TG) levels. (K) The AMPKα1, Cpt1, Acca, Atgl mRNA expression level in mice liver (n≥5). (L) SCAD activity in liver of mice (n=5). The data are expressed as mean ± SD. *p<0.05, **p<0.01.

Figure 6—source data 1

Effects of PD1 antibody on liver lipid metabolism in HFD mice.

https://cdn.elifesciences.org/articles/88521/elife-88521-fig6-data1-v1.zip
Author response image 1
The expression level of BATF in clumster of cells in the liver.
Author response image 2
The images of the heart and spleen of mice.

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Mice)BATFGenBankNM_016767.2
Strain, strain background (Mus musculus)C57BL/6 J (Wild type)Guangxi Medical Universitymale
Cell line (Human)HepG2 (hepatocellular carcinoma, youth)ATCCATCC number: HB-8065
Cell line (Human)L02 (Normal, fetal liver)YUCHI Biology
Cell line (Mus musculus)Hepa1-6 (Hepatoma)ATCCATCC number: CRL-1830
Cell line (Mus musculus)AML12 (Normal, 3-month-old)ATCCATCC number: CRL-2254
Cell line (Human)HEK293T (Normal, Kidney)ATCCATCC number: ACS-4500
Cell line (Mus musculus)3T3L1 (Embryo)ATCCATCC number: CL-173
Transfected construct (Mus musculus)HBAAV/8-ZsGreenpackaged by HANBIO
Transfected construct (Mus musculus)HBAAV2/8-CMV-m-BATF-3×flag-ZsGreenpackaged by HANBIOAdeno-associated virus construct to transfect and express the BATF.
Biological sample (Mus musculus)primary hepatocytesThis paperMaterials and methods: Primary hepatocyte isolation and AAV infectionFreshly isolated from C57BL/6 J
AntibodyBATF (D7C5) (Rabbit monoclonal)Cell signaling technologyCat# 8638WB (1:1000)
AntibodyAnti-beta Actin (Rabbit polyclonal)ServicebioCat# GB11001WB (1:1000)
AntibodyPeroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) (Rabbit Polyclonal)Jackson ImmunoResearchCat# 111-035-003WB (1:2000)
Recombinant DNA reagentpcDNA3.1(-)-Mice BATFThis paperCell culture and transfection
Recombinant DNA reagentpcDNA3.1(-)-Mice PD1This paperCell culture and transfection
Recombinant DNA reagentpMSCV-PIG-BATFThis paperRetroviral transduction
Recombinant DNA reagentpUMVCAdd genePlasmid #8449
Recombinant DNA reagentpCMV-VSV-GAdd genePlasmid # 8454
Recombinant DNA reagentpGL3-PD1 vectorThis paperLuciferase assay for promoter activity analysis
Recombinant DNA reagentpRL-TKBeyotime BiotechnologyD2760
Sequence-based reagentsiRNA: BATF RNAisynthesized from Sangon Biotech
Commercial assay or kitTriglyceride assay kitNanjing Jiancheng Bioengineering InstituteCat# A110-1-1
Commercial assay or kitTotal cholesterolNanjing Jiancheng Bioengineering InstituteCat# A111-1-1
Commercial assay or kitTissue SCAD assay kitGen MedCat# GMS 50119.2.1
Commercial assay or kitAlanine transaminase (ALT)Nanjing Jiancheng Bioengineering InstituteCat# C009-2-1
Commercial assay or kitAspartate aminotransferase (AST)Nanjing Jiancheng Bioengineering InstituteCat# C010-2-1
Commercial assay or kitCellular ATP contentBeyotime BiotechnologyCat# S0026
Commercial assay or kitRNA Reverse Transcription SystemPromegaCat# A3500
Commercial assay or kitClonExpress II One Step Cloning KitVazymeCat# C112-01/02
Commercial assay or kitDual-Lumi II Luciferase Reporter gene Assay kitBeyotime BiotechnologyCat# PG089S
Commercial assay or kitCellular ATP contentBeyotime BiotechnologyCat# S0026
Chemical compound, drugHigh-fat-diet (HFD)Trophic Animal Feed High-tech Co. LtdTP2330055Mstandar: D12492
Chemical compound, drugNormal diet (ND)Trophic Animal Feed High-tech Co. LtdTP2330055MCstandar: AIN93
Chemical compound, drugOleic acid (OA)Sigma-AldrichCat# O1383
Chemical compound, drugPalmitic acid (PA)Sigma-AldrichCat# P0500
Software, algorithmImage JNational Institutes of Healthhttps://Imagej.nih.gov/ij/
Software, algorithmAdobe Photoshop CS6Adobehttps://www.adobe.com/cn
Software, algorithmGraphPad Prism 8.0.1GraphPadhttps://www.graphpad.com/
OtherInVivoPlus anti-mouse PD1 (CD279) (Mouse RMP1-14)Bio X CellCat# BP0146Intraperitoneal injection: 200 μg/mouse
OtherRat IgG-Isotype Control (Rat monoclonal)abcamCat# ab37361Intraperitoneal injection: 200 μg/mouse

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiwang Zhang
  2. Qichao Liao
  3. Tingli Pan
  4. Lin Yu
  5. Zupeng Luo
  6. Songtao Su
  7. Shi Liu
  8. Menglong Hou
  9. Yixing Li
  10. Turtushikh Damba
  11. Yunxiao Liang
  12. Lei Zhou
(2023)
BATF relieves hepatic steatosis by inhibiting PD1 and promoting energy metabolism
eLife 12:RP88521.
https://doi.org/10.7554/eLife.88521.3