N-cadherin directs the collective Schwann cell migration required for nerve regeneration through Slit2/3 mediated contact inhibition of locomotion

Abstract

Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.

Data availability

All data are included in the manuscript, Figures and Figure supplements. Source data files have been provided for all Western Blots.

Article and author information

Author details

  1. Julian J A Hoving

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Harford-Wright

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick Wingfield-Digby

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anne-Laure Cattin

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Mariana Campana

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Power

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Toby Morgan

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Erica Torchiaro

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Victor Quereda

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Alison C Lloyd

    Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
    For correspondence
    alison.lloyd@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7712-1773

Funding

Cancer Research UK (C378/A4308)

  • Alison C Lloyd

Medical Research Council (Studentship)

  • Julian J A Hoving

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with UK Home office legislation and in close consultation with animal care staff at the University College London (UCL), Biological Services Central Unit. All animal work was carried out under the UCL establishment licence (X7069FDD2) and all procedures performed were approved by the UK Home office in project licence (PP9833892).

Copyright

© 2024, Hoving et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,333
    views
  • 269
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julian J A Hoving
  2. Elizabeth Harford-Wright
  3. Patrick Wingfield-Digby
  4. Anne-Laure Cattin
  5. Mariana Campana
  6. Alex Power
  7. Toby Morgan
  8. Erica Torchiaro
  9. Victor Quereda
  10. Alison C Lloyd
(2024)
N-cadherin directs the collective Schwann cell migration required for nerve regeneration through Slit2/3 mediated contact inhibition of locomotion
eLife 13:e88872.
https://doi.org/10.7554/eLife.88872

Share this article

https://doi.org/10.7554/eLife.88872

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.