Disrupting abnormal neuronal oscillations with adaptive delayed feedback control

  1. Domingos L Castro
  2. Miguel Aroso
  3. A Pedro Aguiar
  4. David B Grayden
  5. Paulo Aguiar  Is a corresponding author
  1. Universidade do Porto, Portugal
  2. University of Melbourne, Australia

Abstract

Closed-loop neuronal stimulation has a strong therapeutic potential for neurological disorders such as Parkinson's disease. However, at the moment, standard stimulation protocols rely on continuous open-loop stimulation and the design of adaptive controllers is an active field of research. Delayed Feedback Control (DFC), a popular method used to control chaotic systems, has been proposed as a closed-loop technique for desynchronization of neuronal populations but, so far, was only tested in computational studies. We implement DFC for the first time in neuronal populations and access its efficacy in disrupting unwanted neuronal oscillations. To analyse in detail the performance of this activity control algorithm we used specialized in vitro platforms with high spatiotemporal monitoring/stimulating capabilities. We show that the conventional DFC in fact worsens the neuronal population oscillatory behaviour, which was never reported before. Conversely, we present an improved control algorithm, adaptive DFC (aDFC), which monitors the ongoing oscillation periodicity and self-tunes accordingly. aDFC effectively disrupts collective neuronal oscillations restoring a more physiological state. Overall, these results support aDFC as a better candidate for therapeutic closed-loop brain stimulation.

Data availability

The data that support the findings of this study are openly available in ZENODO at the following URL/DOI: https://doi.org/10.5281/zenodo.10138446

The following data sets were generated

Article and author information

Author details

  1. Domingos L Castro

    i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Miguel Aroso

    i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3118-0185
  3. A Pedro Aguiar

    Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. David B Grayden

    Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Paulo Aguiar

    i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    For correspondence
    pauloaguiar@i3s.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4164-5713

Funding

La Caixa Foundation (HR22-00189)

  • Paulo Aguiar

Santa Casa da Misericórdia de Lisboa (MB-12-2022)

  • Paulo Aguiar

Fundação para a Ciência e a Tecnologia (SFRH/BD/143956/2019)

  • Domingos L Castro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments followed both the European legislation regarding the use of animals for scientific purposes and the protocols approved by the ethical committee of i3S. The Animal Facility of i3S follows the FELASA guidelines and recommendations concerning laboratory animal welfare, complies with the European Guidelines (Directive 2010/63/EU) transposed to Portuguese legislation by Decreto-Lei no 113/2013 and is licensed by the Portuguese official veterinary department (DGAV, Ref 004461).

Copyright

© 2024, Castro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 705
    views
  • 110
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Domingos L Castro
  2. Miguel Aroso
  3. A Pedro Aguiar
  4. David B Grayden
  5. Paulo Aguiar
(2024)
Disrupting abnormal neuronal oscillations with adaptive delayed feedback control
eLife 13:e89151.
https://doi.org/10.7554/eLife.89151

Share this article

https://doi.org/10.7554/eLife.89151

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.