Autophagosome membrane expansion is mediated by the N-terminus and cis-membrane association of human ATG8s

  1. Wenxin Zhang
  2. Taki Nishimura
  3. Deepanshi Gahlot
  4. Chieko Saito
  5. Colin Davis
  6. Harold BJ Jefferies
  7. Anne Schreiber
  8. Lipi Thukral
  9. Sharon A Tooze  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Tokyo, Japan
  3. CSIR-Institute of Genomics and Integrative Biology, India

Abstract

Autophagy is an essential catabolic pathway which sequesters and engulfs cytosolic substrates via autophagosomes, unique double-membraned structures. ATG8 proteins are ubiquitin-like proteins recruited to autophagosome membranes by lipidation at the C-terminus. ATG8s recruit substrates, such as p62, and play an important role in mediating autophagosome membrane expansion. However, the precise function of lipidated ATG8 in expansion remains obscure. Using a real-time in vitro lipidation assay, we revealed that the N-termini of lipidated human ATG8s (LC3B and GABARAP) are highly dynamic and interact with the membrane. Moreover, atomistic MD simulation and FRET assays indicate that N-termini of LC3B and GABARAP associate in cis on the membrane. By using non-tagged GABARAPs, we show that GABARAP N-terminus and its cis-membrane insertion are crucial to regulate the size of autophagosomes in cells irrespectively of p62 degradation. Our study provides fundamental molecular insights into autophagosome membrane expansion, revealing the critical and unique function of lipidated ATG8.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 - 6.

Article and author information

Author details

  1. Wenxin Zhang

    Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7657-4495
  2. Taki Nishimura

    •Department of Biochemistry and Molecular Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4019-5984
  3. Deepanshi Gahlot

    CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2681-8818
  4. Chieko Saito

    Department of Biochemistry and Molecular Biology, University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Colin Davis

    Cellular Degradation Systems Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Harold BJ Jefferies

    Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Schreiber

    Cellular Degradation Systems Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Lipi Thukral

    CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1961-039X
  9. Sharon A Tooze

    Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    sharon.tooze@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2182-3116

Funding

European Research Council (FP7/2007-2013 788708)

  • Wenxin Zhang
  • Sharon A Tooze

Japan Science and Technology, ERATO (JPMJER1702)

  • Chieko Saito

Council of Scientific and Industrial Research, India (OLP1163)

  • Deepanshi Gahlot
  • Lipi Thukral

Wellcome Trust (CC2134)

  • Wenxin Zhang
  • Harold BJ Jefferies
  • Sharon A Tooze

Wellcome Trust (CC2064)

  • Colin Davis
  • Anne Schreiber

Cancer Research UK (CC2134)

  • Wenxin Zhang
  • Harold BJ Jefferies
  • Sharon A Tooze

Cancer Research UK (CC2064)

  • Colin Davis
  • Anne Schreiber

Medical Research Council (CC2134)

  • Wenxin Zhang
  • Harold BJ Jefferies
  • Sharon A Tooze

Medical Research Council (CC2064)

  • Colin Davis
  • Anne Schreiber

Japan Science and Technology, PRESTO (JPMJPR20EC)

  • Taki Nishimura

Grant-in-Aid for Transformative Research Areas (B (grant 21H05146)

  • Taki Nishimura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wenxin Zhang
  2. Taki Nishimura
  3. Deepanshi Gahlot
  4. Chieko Saito
  5. Colin Davis
  6. Harold BJ Jefferies
  7. Anne Schreiber
  8. Lipi Thukral
  9. Sharon A Tooze
(2023)
Autophagosome membrane expansion is mediated by the N-terminus and cis-membrane association of human ATG8s
eLife 12:e89185.
https://doi.org/10.7554/eLife.89185

Share this article

https://doi.org/10.7554/eLife.89185

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.