Forkhead transcription factor FKH-8 cooperates with RFX in the direct regulation of sensory cilia in C. elegans

  1. Rebeca Brocal-Ruiz
  2. Ainara Esteve-Serrano
  3. Carlos Mora-Martínez
  4. Maria Luisa Franco-Rivadeneira
  5. Peter Swoboda
  6. Juan Tena
  7. Marçal Vilar
  8. Nuria Flames  Is a corresponding author
  1. Instituto de Biomedicina de Valencia, Spain
  2. Karolinska Institute, Sweden
  3. Centro Andaluz de Biología del Desarrollo, Spain

Abstract

Cilia, either motile or non-motile (a.k.a primary or sensory), are complex evolutionarily conserved eukaryotic structures composed of hundreds of proteins required for their assembly, structure and function that are collectively known as the ciliome. Ciliome gene mutations underlie a group of pleiotropic genetic diseases known as ciliopathies. Proper cilium function requires the tight coregulation of ciliome gene transcription, which is only fragmentarily understood. RFX transcription factors (TF) have an evolutionarily conserved role in the direct activation of ciliome genes both in motile and non-motile cilia cell-types. In vertebrates, FoxJ1 and FoxN4 Forkhead (FKH) TFs work with RFX in the direct activation of ciliome genes, exclusively in motile cilia cell-types. No additional TFs have been described to act together with RFX in primary cilia cell-types in any organism. Here we describe FKH-8, a FKH TF, as a direct regulator of the sensory ciliome genes in Caenorhabditis elegans. FKH-8 is expressed in all ciliated neurons in C. elegans, binds the regulatory regions of ciliome genes, regulates ciliome gene expression, cilium morphology and a wide range of behaviours mediated by sensory ciliated neurons. FKH-8 and DAF-19 (C. elegans RFX) physically interact and synergistically regulate ciliome gene expression. C. elegans FKH-8 function can be replaced by mouse FOXJ1 and FOXN4 but not by other members of other mouse FKH subfamilies. In conclusion, RFX and FKH TF families act jointly as direct regulators of ciliome genes also in sensory ciliated cell types suggesting that this regulatory logic could be an ancient trait predating functional cilia sub-specialization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data file 1 and 3 contain all raw data and statistical analysis for figures, Source Data file 2 contains information regarding gene lists and bioinformatics analysis, Source Data file 4 has all the information regarding plasmids, strains and primers.

The following previously published data sets were used
    1. Davis CA
    2. Hitz BC
    3. Sloan CA
    4. Chan ET
    5. et al
    (2018) The 1168 Encyclopedia of DNA elements (ENCODE): Data portal update.
    ENCODE database:ENCFF818YOR, ENCFF549ZSK, ENCFF694MNH, ENCFF552OQU, ENCFF357NSB, ENCFF496CFD, ENCFF092YIJ, ENCFF799WBN, ENCFF810HSZ, ENCFF554KQD, ENCFF390OSN, ENCFF433BEM, ENCFF960EQR, ENCFF792JXA, ENCFF761XWC, ENCFF384GUN, ENCFF803WZH, ENCFF448URK, ENCFF827XAE, ENCFF595SML, ENCFF803QRP, ENCFF587FBJ, ENCFF789TVB, ENCFF816EMR, ENCFF554VDX, ENCFF241SCQ, ENCFF202WJY, ENCFF017FUN, ENCFF798RPP, ENCFF541MIX, ENCFF176UKF, ENCFF947PYR, ENCFF786PUW, ENCFF400VSR, ENCFF786PQH, ENCFF398DRS, ENCFF868IPD, ENCFF409ZRG, ENCFF303QBQ, ENCFF671UBP, ENCFF273RBS, ENCFF995PYF, ENCFF897INS, ENCFF489OMV.

Article and author information

Author details

  1. Rebeca Brocal-Ruiz

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3375-942X
  2. Ainara Esteve-Serrano

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Mora-Martínez

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Luisa Franco-Rivadeneira

    Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Swoboda

    Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6416-8572
  6. Juan Tena

    Consejo Superior de Investigaciones Científicas, Centro Andaluz de Biología del Desarrollo, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Marçal Vilar

    Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9376-6544
  8. Nuria Flames

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    For correspondence
    nflames@ibv.csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0961-0609

Funding

HORIZON EUROPE European Research Council (ERC-2020-COG-101002203(NEUROCODE))

  • Rebeca Brocal-Ruiz
  • Ainara Esteve-Serrano
  • Carlos Mora-Martínez
  • Nuria Flames

Ministerio de ciencia e innovacion (BES-2015-072799)

  • Rebeca Brocal-Ruiz

Ministerio de ciencia e innovacion (PID2020-115635RB-I00)

  • Rebeca Brocal-Ruiz
  • Ainara Esteve-Serrano
  • Carlos Mora-Martínez
  • Nuria Flames

European Research Council (ERC-2011-StG_20101109)

  • Rebeca Brocal-Ruiz
  • Ainara Esteve-Serrano
  • Carlos Mora-Martínez
  • Nuria Flames

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Brocal-Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,208
    views
  • 179
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebeca Brocal-Ruiz
  2. Ainara Esteve-Serrano
  3. Carlos Mora-Martínez
  4. Maria Luisa Franco-Rivadeneira
  5. Peter Swoboda
  6. Juan Tena
  7. Marçal Vilar
  8. Nuria Flames
(2023)
Forkhead transcription factor FKH-8 cooperates with RFX in the direct regulation of sensory cilia in C. elegans
eLife 12:e89702.
https://doi.org/10.7554/eLife.89702

Share this article

https://doi.org/10.7554/eLife.89702

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Olivia B Taylor, Nicholas DeGroff ... Andy J Fischer
    Research Article

    The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

    1. Developmental Biology
    Kayleigh Bozon, Hartmut Cuny ... Sally L Dunwoodie
    Research Article

    Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.