A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients

  1. Zhanwei Du
  2. Lin Wang
  3. Yuan Bai
  4. Yunhu Liu
  5. Eric HY Lau
  6. Alison P Galvani
  7. Robert M Krug
  8. Benjamin John Cowling  Is a corresponding author
  9. Lauren A Meyers  Is a corresponding author
  1. University of Hong Kong, Hong Kong
  2. University of Cambridge, United Kingdom
  3. Yale University, United States
  4. The University of Texas at Austin, United States
  5. University of Hong Kong, China

Abstract

Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

Data availability

All data used in this study can be accessed through Github: https://github.com/ZhanweiDU/PaxHK/.

Article and author information

Author details

  1. Zhanwei Du

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2020-767X
  2. Lin Wang

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5371-2138
  3. Yuan Bai

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  4. Yunhu Liu

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  5. Eric HY Lau

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  6. Alison P Galvani

    Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Robert M Krug

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3754-5034
  8. Benjamin John Cowling

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
    For correspondence
    bcowling@hku.hk
    Competing interests
    Benjamin John Cowling, reports honoraria from AstraZeneca, Fosun Pharma, GlaxoSmithKline, Moderna, Pfizer,Sanofi Pasteur, and Roche. The authors report no other potential conflicts of interest.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6297-7154
  9. Lauren A Meyers

    Department of Integrative Biology, The University of Texas at Austin, Austin, United States
    For correspondence
    laurenmeyers@austin.utexas.edu
    Competing interests
    No competing interests declared.

Funding

Innovation and Technology Commission (AIR@InnoHK)

  • Zhanwei Du

Health and Medical Research Fund (07210147)

  • Zhanwei Du

National Natural Science Foundation of China (82304204)

  • Yuan Bai

National Institutes of Health (AI151176)

  • Lauren A Meyers

Centers for Disease Control and Prevention (U01IP001136)

  • Lauren A Meyers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Individual patient-informed consent was not required in this study using anonymized data.

Copyright

© 2024, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 229
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhanwei Du
  2. Lin Wang
  3. Yuan Bai
  4. Yunhu Liu
  5. Eric HY Lau
  6. Alison P Galvani
  7. Robert M Krug
  8. Benjamin John Cowling
  9. Lauren A Meyers
(2024)
A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients
eLife 13:e89801.
https://doi.org/10.7554/eLife.89801

Share this article

https://doi.org/10.7554/eLife.89801

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article Updated

    Background:

    The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).

    Methods:

    Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.

    Results:

    Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).

    Conclusions:

    Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding:

    Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.