A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients

  1. Zhanwei Du
  2. Lin Wang
  3. Yuan Bai
  4. Yunhu Liu
  5. Eric HY Lau
  6. Alison P Galvani
  7. Robert M Krug
  8. Benjamin John Cowling  Is a corresponding author
  9. Lauren A Meyers  Is a corresponding author
  1. University of Hong Kong, Hong Kong
  2. University of Cambridge, United Kingdom
  3. Yale University, United States
  4. The University of Texas at Austin, United States
  5. University of Hong Kong, China

Abstract

Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

Data availability

All data used in this study can be accessed through Github: https://github.com/ZhanweiDU/PaxHK/.

Article and author information

Author details

  1. Zhanwei Du

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2020-767X
  2. Lin Wang

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5371-2138
  3. Yuan Bai

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  4. Yunhu Liu

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  5. Eric HY Lau

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  6. Alison P Galvani

    Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Robert M Krug

    Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3754-5034
  8. Benjamin John Cowling

    Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
    For correspondence
    bcowling@hku.hk
    Competing interests
    Benjamin John Cowling, reports honoraria from AstraZeneca, Fosun Pharma, GlaxoSmithKline, Moderna, Pfizer,Sanofi Pasteur, and Roche. The authors report no other potential conflicts of interest.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6297-7154
  9. Lauren A Meyers

    Department of Integrative Biology, The University of Texas at Austin, Austin, United States
    For correspondence
    laurenmeyers@austin.utexas.edu
    Competing interests
    No competing interests declared.

Funding

Innovation and Technology Commission (AIR@InnoHK)

  • Zhanwei Du

Health and Medical Research Fund (07210147)

  • Zhanwei Du

National Natural Science Foundation of China (82304204)

  • Yuan Bai

National Institutes of Health (AI151176)

  • Lauren A Meyers

Centers for Disease Control and Prevention (U01IP001136)

  • Lauren A Meyers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Individual patient-informed consent was not required in this study using anonymized data.

Copyright

© 2024, Du et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,677
    views
  • 221
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhanwei Du
  2. Lin Wang
  3. Yuan Bai
  4. Yunhu Liu
  5. Eric HY Lau
  6. Alison P Galvani
  7. Robert M Krug
  8. Benjamin John Cowling
  9. Lauren A Meyers
(2024)
A retrospective cohort study of Paxlovid efficacy depending on treatment time in hospitalized COVID-19 patients
eLife 13:e89801.
https://doi.org/10.7554/eLife.89801

Share this article

https://doi.org/10.7554/eLife.89801

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.