Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy

  1. Lutian Yao
  2. Jiawei Lu
  3. Leilei Zhong
  4. Yulong Wei
  5. Tao Gui
  6. Luqiang Wang
  7. Jaimo Ahn
  8. Joel D Boerckel
  9. Danielle Rux
  10. Christina Mundy
  11. Ling Qin  Is a corresponding author
  12. Maurizio Pacifici  Is a corresponding author
  1. Children's Hospital of Philadelphia, United States
  2. University of Pennsylvania, United States
  3. University of Michigan-Ann Arbor, United States

Abstract

Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the TGF-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.

Data availability

All data needed to evaluate the conclusions of this study are present in the paper and/or Supplemental Material. Sequencing data have been deposited in GEO under accession code GSE192630

The following data sets were generated

Article and author information

Author details

  1. Lutian Yao

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0652-2075
  2. Jiawei Lu

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leilei Zhong

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1153-4115
  4. Yulong Wei

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3823-9984
  5. Tao Gui

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luqiang Wang

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jaimo Ahn

    Department of Orthopaedic Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joel D Boerckel

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3126-3025
  9. Danielle Rux

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christina Mundy

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3328-5965
  11. Ling Qin

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    For correspondence
    qinling@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2582-0078
  12. Maurizio Pacifici

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    For correspondence
    pacificim@email.chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6854-4942

Funding

National Institutes of Health (R01AR071946)

  • Maurizio Pacifici

National Institutes of Health (R21AR074570)

  • Ling Qin

National Institutes of Health (R01AG069401)

  • Ling Qin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental animal protocols were approved by the Institutional Animal Care and Use Committees of the University of Pennsylvania (IACUC#804112) and the Children's Hospital of Philadelphia (IACUC#20-000958). The experiments were performed in the animal facilities of both institutions, which implement strict regimens for animal care and use.

Copyright

© 2023, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,213
    views
  • 253
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lutian Yao
  2. Jiawei Lu
  3. Leilei Zhong
  4. Yulong Wei
  5. Tao Gui
  6. Luqiang Wang
  7. Jaimo Ahn
  8. Joel D Boerckel
  9. Danielle Rux
  10. Christina Mundy
  11. Ling Qin
  12. Maurizio Pacifici
(2023)
Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy
eLife 12:e89822.
https://doi.org/10.7554/eLife.89822

Share this article

https://doi.org/10.7554/eLife.89822

Further reading

    1. Cell Biology
    2. Medicine
    Yongli Qin, Jumpei Shirakawa ... Baohong Zhao
    Research Article

    The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.

    1. Cell Biology
    Jarno Mäkelä, Alexandros Papagiannakis ... Christine Jacobs-Wagner
    Research Article

    Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.