Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy

  1. Lutian Yao
  2. Jiawei Lu
  3. Leilei Zhong
  4. Yulong Wei
  5. Tao Gui
  6. Luqiang Wang
  7. Jaimo Ahn
  8. Joel D Boerckel
  9. Danielle Rux
  10. Christina Mundy
  11. Ling Qin  Is a corresponding author
  12. Maurizio Pacifici  Is a corresponding author
  1. Children's Hospital of Philadelphia, United States
  2. University of Pennsylvania, United States
  3. University of Michigan-Ann Arbor, United States

Abstract

Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the TGF-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.

Data availability

All data needed to evaluate the conclusions of this study are present in the paper and/or Supplemental Material. Sequencing data have been deposited in GEO under accession code GSE192630

The following data sets were generated

Article and author information

Author details

  1. Lutian Yao

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0652-2075
  2. Jiawei Lu

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leilei Zhong

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1153-4115
  4. Yulong Wei

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3823-9984
  5. Tao Gui

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luqiang Wang

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jaimo Ahn

    Department of Orthopaedic Surgery, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joel D Boerckel

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3126-3025
  9. Danielle Rux

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christina Mundy

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3328-5965
  11. Ling Qin

    Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, United States
    For correspondence
    qinling@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2582-0078
  12. Maurizio Pacifici

    Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, United States
    For correspondence
    pacificim@email.chop.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6854-4942

Funding

National Institutes of Health (R01AR071946)

  • Maurizio Pacifici

National Institutes of Health (R21AR074570)

  • Ling Qin

National Institutes of Health (R01AG069401)

  • Ling Qin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental animal protocols were approved by the Institutional Animal Care and Use Committees of the University of Pennsylvania (IACUC#804112) and the Children's Hospital of Philadelphia (IACUC#20-000958). The experiments were performed in the animal facilities of both institutions, which implement strict regimens for animal care and use.

Copyright

© 2023, Yao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,277
    views
  • 256
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lutian Yao
  2. Jiawei Lu
  3. Leilei Zhong
  4. Yulong Wei
  5. Tao Gui
  6. Luqiang Wang
  7. Jaimo Ahn
  8. Joel D Boerckel
  9. Danielle Rux
  10. Christina Mundy
  11. Ling Qin
  12. Maurizio Pacifici
(2023)
Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy
eLife 12:e89822.
https://doi.org/10.7554/eLife.89822

Share this article

https://doi.org/10.7554/eLife.89822

Further reading

    1. Cell Biology
    Marjan Slak Rupnik
    Insight

    Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.