Disseminating cells in human oral tumours possess an EMT cancer stem cell marker profile that is predictive of metastasis in image-based machine learning

  1. Gehad Youssef
  2. Luke Gammon
  3. Leah Ambler
  4. Sophia Lunetto
  5. Alice Scemama
  6. Hannah Cottom
  7. Kim Piper
  8. Ian C Mackenzie
  9. Michael P Philpott
  10. Adrian Biddle  Is a corresponding author
  1. Queen Mary University of London, United Kingdom
  2. Barts Health NHS Trust, United Kingdom

Abstract

Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.

Data availability

There are no sequencing datasets associated with this study. Publicly available packages used to analyse immunofluorescent images are listed in the methods section.

The following previously published data sets were used

Article and author information

Author details

  1. Gehad Youssef

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke Gammon

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1233-2665
  3. Leah Ambler

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophia Lunetto

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Alice Scemama

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannah Cottom

    Department of Cellular Pathology, Barts Health NHS Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Kim Piper

    Department of Cellular Pathology, Barts Health NHS Trust, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Ian C Mackenzie

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael P Philpott

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1255-4612
  10. Adrian Biddle

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    For correspondence
    a.biddle@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-9720

Funding

Animal Free Research UK

  • Gehad Youssef
  • Michael P Philpott
  • Adrian Biddle

Oracle Cancer Trust

  • Leah Ambler
  • Adrian Biddle

National Centre for the Replacement Refinement and Reduction of Animals in Research (NC/S001573/1)

  • Alice Scemama
  • Adrian Biddle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Archival human specimens and associated de-identified clinical data was accessed under UK HRA approval with REC ref 18/WM/0326.

Copyright

© 2023, Youssef et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 863
    views
  • 135
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gehad Youssef
  2. Luke Gammon
  3. Leah Ambler
  4. Sophia Lunetto
  5. Alice Scemama
  6. Hannah Cottom
  7. Kim Piper
  8. Ian C Mackenzie
  9. Michael P Philpott
  10. Adrian Biddle
(2023)
Disseminating cells in human oral tumours possess an EMT cancer stem cell marker profile that is predictive of metastasis in image-based machine learning
eLife 12:e90298.
https://doi.org/10.7554/eLife.90298

Share this article

https://doi.org/10.7554/eLife.90298

Further reading

    1. Cancer Biology
    Phaedra C Ghazi, Kayla T O'Toole ... Martin McMahon
    Research Article

    Mutational activation of KRAS occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRASG12C such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRASG12C-driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients who do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRASG12C, efforts are underway to develop effective combination therapies. Here, we report that the inhibition of KRASG12C signaling increases autophagy in KRASG12C-expressing lung cancer cells. Moreover, the combination of DCC-3116, a selective ULK1/2 inhibitor, plus sotorasib displays cooperative/synergistic suppression of human KRASG12C-driven lung cancer cell proliferation in vitro and superior tumor control in vivo. Additionally, in genetically engineered mouse models of KRASG12C-driven NSCLC, inhibition of either KRASG12C or ULK1/2 decreases tumor burden and increases mouse survival. Consequently, these data suggest that ULK1/2-mediated autophagy is a pharmacologically actionable cytoprotective stress response to inhibition of KRASG12C in lung cancer.

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.