Txnip deletions and missense alleles prolong the survival of cones in a retinitis pigmentosa mouse model

  1. Yunlu Xue
  2. Yimin Zhou
  3. Constance L Cepko  Is a corresponding author
  1. Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, United States
  2. Lingang Laboratory, China
  3. School of Life Science and Technology, ShanghaiTech University, China
  4. Howard Hughes Medical Institute, United States
5 figures, 1 table and 1 additional file

Figures

Effect of arrestin domain containing protein 4 (Arrdc4) on cone survival in retinitis pigmentosa mice.

(A) Amino acid sequences of mouse TXNIP and mouse ARRDC4. In the full-length alignment (421 amino acid), Identity: 172/421, 40.86%; Similarity: 246/421, 58.43%; Gaps: 28/421, 6.65%. Color code: …

Figure 2 with 2 supplements
Txnip deletions expressed only within retinal pigmented epithelium (RPE) cells: effects on GLUT1 removal and cone survival.

(A) Glucose transporter 1 (GLUT1) expression in P20 wild-type eyes infected with control (AAV8-RedO-H2BGFP, 2.5×108 vg/eye), or a Txnip allele (2.5×108 vg/eye) plus RedO-H2BGFP (2.5×108 vg/eye), as …

Figure 2—figure supplement 1
Txnip deletions expressed only within retinal pigmented epithelium (RPE) cells: quantification of the Glucose transporter 1 (GLUT1) level within the basal surface of the RPE.

GLUT1 expression in P20 wild-type (wt) eyes infected with control (AAV8-RedO-H2BGFP, 2.5×108 vg/eye), or a Txnip allele (2.5×108 vg/eye) plus RedO-H2BGFP (2.5×108 vg/eye), as indicated in each …

Figure 2—figure supplement 2
Predicted protein-protein interactions of TXNIP and Glucose transporter 1 (GLUT1) by an algorithm, ColabFold, based on AlphaFold-2.
Tests of Txnip alleles on cone survival.

(A) Representative P50 rd1 flat-mounted retinas after P0 infection with 1 of 5 different Txnip alleles (AAV8-RedO- N.Txnip /C.Txnip.C247S/ nt.Txnip.C247S1-301/nt.Txnip.C247S1-320 or …

Summary of various alleles of Txnip in this and previous study (Xue et al., 2021).

‘Retinal pigmented epithelium (RPE) Glucose transporter 1 (GLUT1) Removal’ refers to the amount of GLUT1 immunohistochemical signal on the basal surface following expression in the RPE using the …

Figure 5 with 2 supplements
Effect of knockdown of Hsp90ab1 in retinitis pigmentosa cones in vivo.

(A) AAV8-RO1.7-Hsp90ab1-FLAG (1×109 vg/eye) co-injected with shNC (non-targeting shRNA control, AAV8-RedO-shRNA, 1×109 vg/eye) or co-injected with Hsp90ab1 shRNAs #a, #b, #c (AAV8-RedO-shRNA, 1×109

Figure 5—figure supplement 1
Predicted 3D protein structures of HSP90AB1 and PARP1.

(A) Predicted 3D protein structures of HSP90AB1 by AI algorithm AlphaFold-2 from two angles of view. (B) Predicted 3D protein structures of PARP1 by AI algorithm AlphaFold-2 from two angles of view.

Figure 5—figure supplement 2
Predicted 3D protein interactions among TXNIP, HSP90AB1, and PARP1 by AI algorithm AlphaFold Multimer from two angles of view.

Abbreviations: Arr C-, C-terminal arrestin domain.

Tables

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
AntibodyGLUT1 (rabbit monoclonal)Abcamab115730IHC (1:500)
Genetic reagent (M. musculus)Arrdc4 cDNAGeneCopoeiaCat. #: Mm26972 NCBI: NM_001042592.2
Genetic reagent (M. musculus)Hsp90ab1 cDNAGeneCopoeiaCat. #: Mm03161 NCBI: NM_008302.3
Software, algorithmProtein 3D structure predictionAlphaFold-2TXNIP (M. musculus); ARRDC4 (M. musculus); HSP90AB1 (M. musculus); PARP1 (M. musculus)Jumper et al., 2021;
https://alphafold.ebi.ac.uk
Software, algorithmProtein 3D interaction predictionColabFoldAlphaFold2_mmseqs2Mirdita et al., 2022;
Ovchinnikov, 2021;
https://github.com/sokrypton/colabfold
Software, algorithmProtein 3D interaction predictionCOSMIC2AlphaFold2 – MultimerEvans et al., 2021;
http://cosmic-cryoem.org/tools/alphafoldmultimer/
Software, algorithmProtein 3D structure viewerRCSB PDBMol* 3D ViewerTo visualize the 3D structure of proteins in.pdb files https://www.rcsb.org/3d-view

Additional files

Download links