COVID-19 and Cancer: Acting on past lessons and learning new ones

eLife has published a special issue containing articles that examine how cancer prevention, control, care and survivorship were impacted by the COVID-19 pandemic.
  1. Eduardo L Franco  Is a corresponding author
  2. Diane M Harper  Is a corresponding author
  1. eLife, United Kingdom

We have seen much new science emerge since January 2020, when the World Health Organization (WHO) declared COVID-19 to be a public health emergency of international concern. Indeed, according to PubMed, researchers have published more than 420,000 articles on COVID-19, SARS-CoV-2 and related topics to date. Moreover, a number of efficacious and safe vaccines and anti-virals were developed in a relatively short period of time. Researchers from many different fields – including virology, epidemiology, molecular biology, vaccinology, and infectious disease modelling – were involved in these efforts.

For those who worked on the global HIV/AIDS epidemic, which began in 1981, the COVID-19 pandemic brought a sense of déjà vu. Back in the early 1980s, with the support of funding agencies, entire academic teams in a wide range of fields reoriented their research programs in an effort to control the effects of the HIV/AIDS epidemic via multiple areas, including epidemiology, HIV pathogenesis, vaccine development, diagnostics and therapy. Four decades later, HIV infection is no longer a death sentence, but there is still a need for research into new treatments and approaches for prevention and disease management, and to ensure that existing treatments are made available to vulnerable populations in low- and middle-income countries. The HIV/AIDS epidemic also resulted in a great deal of new science (almost 500,000 articles), albeit spread out over a longer time frame than the articles published on COVID-19 to date.

There are other parallels. Much like the HIV/AIDS epidemic required new science, new social practices, and new disease-management skills, so did the COVID pandemic. The COVID-19 lockdowns resulted in the suspension of cancer-prevention activities (such as tobacco control and vaccinations for hepatitis B and human papillomavirus) and prevented people in many countries from being screened for cancer. Treatments for patients with newly diagnosed cancers were also delayed, and existing patients – who were already at increased risk of death from the combined comorbidity of their cancer and COVID – had their oncology surgeries postponed. At the same time, like all other patients, cancer patients had to share their physicians with large numbers of COVID-19 patients: the pandemic also led to high levels of stress and burnout among medical staff, which has resulted in many leaving the profession. Understanding the impact of the pandemic on the entire trajectory of cancer – prevention, screening, diagnosis, therapy, survivorship, and end-of-life care – will help us plan interventions and prioritize care to mitigate or prevent the increases in cancer burden that may happen in the medium and long term.

There are also parallels in how the public and politicians responded to HIV/AIDS and COVID-19. Much like we learned to fight the pervasive bigotry that marginalized gay communities in the 1980s, we must learn how to fight the misinformation and disinformation that have hindered efforts to prevent the spread of COVID-19 in many countries. One stark difference between HIV/AIDS and COVID-19 is that we still do not have an effective vaccine against HIV.

The articles included in this special issue cover many different aspects of the impact of the COVID-19 pandemic on cancer across the globe, including both high- and low-income regions and countries. Many of the articles report the results of empirical research studies that captured the extent of the disruptions in care (such as disruptions in screening and vaccination activities, and delays in diagnoses and care). There are also articles about therapeutic interventions for the care of cancer patients affected by COVID-19, and articles about insightful modelling studies that provided projections of the impact of the pandemic on cancer prevention, control, and care pathways.

One of the lessons learned during the pandemic was that cancer control programmes could be made more resilient by taking advantage of recent technological advances: examples of this include the wider use of patient-centred screening for a number of cancers. The pandemic also confirmed the usefulness of videoconferencing for many different activities, including telemedicine, university teaching and virtual clinical appointments.

We thank all the reviewing editors, guest editors and reviewers who were involved in the peer review of the articles in this special issue (their names are on the home page for the special issue and/or in the individual articles), and we hope that it will serve as a valuable source of scientific evidence and information for those working in public health and elsewhere to develop plans to respond to future epidemics and pandemics. We also hope that this collection of articles will be a valuable historical account of what was often an improvised – yet innovative – response to a major public health threat.

Four decades after the start of the HIV/AIDS epidemic, HIV infection and AIDS are still with us. It is likely that SARS-CoV-2 and COVID-19 – and their successors – will also be with us for years to come, and that they will continue to inspire research that can be translated to provide new medicines, diagnostics and treatments. As the articles in this special issue confirm, it is essential that this research also includes work on managing cancer risk during any future public health emergency.

Article and author information

Author details

  1. Eduardo L Franco

    Eduardo L Franco is a Senior Editor at eLife

    For correspondence
    editorial@elifesciences.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4409-8084
  2. Diane M Harper

    Diane M Harper is a Deputy Editor at eLife

    For correspondence
    editorial@elifesciences.org
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7648-883X

Publication history

  1. Version of Record published: September 6, 2023 (version 1)

Copyright

© 2023, Franco and Harper

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 317
    views
  • 47
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eduardo L Franco
  2. Diane M Harper
(2023)
COVID-19 and Cancer: Acting on past lessons and learning new ones
eLife 12:e91607.
https://doi.org/10.7554/eLife.91607

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article Updated

    Background:

    Few national-level studies have evaluated the impact of ‘hybrid’ immunity (vaccination coupled with recovery from infection) from the Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

    Methods:

    From May 2020 to December 2022, we conducted serial assessments (each of ~4000–9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots (DBSs) to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results:

    Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than 6 months earlier, spike levels fell notably and continuously for the 9-month post-vaccination. In contrast, among adults infected within 6 months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than 6 months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% confidence interval 11–14%) before omicron to 78% (76–80%) by December 2022, equating to 25 million infected adults cumulatively. However, the coronavirus disease 2019 (COVID-19) weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions:

    Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected DBSs are a practicable biological surveillance platform.

    Funding:

    Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael’s Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.