Neural Circuits: Avoiding UV light
Living deep within our oceans, lakes, and ponds are small animals known as zooplankton which typically rise to the surface of the water at night and sink towards the bottom during the day. This synchronised movement helps zooplankton avoid harmful ultraviolet (UV) light and escape diurnal predators that hunt during the day (Malloy et al., 1997).
Most marine invertebrates progress through a ciliated larval stage during their life cycle, and this larva will swim freely like zooplankton before settling on the seafloor and transforming into an adult. During this free-swimming stage, the ciliated larvae also avoid UV light, making them a useful model for studying how zooplankton behave. In the larvae of the annelid worm Platynereis dumerilii, this response is controlled by ciliary photoreceptor cells which detect UV wavelengths via a light-sensitive protein known as c-opsin1 (Verasztó et al., 2018; Conzelmann et al., 2013; Arendt et al., 2004). The larvae of other marine invertebrates also use this mechanism to sense UV light (Jékely et al., 2008). However, it was unclear how this sensory input is relayed to the parts of the nervous system that trigger the larvae to swim downwards away from the sun. Now, in eLife, Gáspár Jékely and colleagues – including Kei Jokura as first author – report that P. dumerilii larvae use the gaseous signalling molecule nitric oxide to pass on this information (Jokura et al., 2023).
The team (who are based at the University of Exeter, University of Bristol, Okinawa Institute of Science and Technology and University of Heidelberg) found that the enzyme responsible for generating nitric oxide, nitric oxide synthase (or NOS for short), is expressed in interneurons that reside in the apical organ region, the part of the larva that receives sensory input. Previously collected electron microscopy data from the whole larval body of P. dumerilii was then analysed (Williams et al., 2017), which revealed that these NOS-expressing interneurons lay immediately downstream of UV-sensing ciliary photoreceptor cells.
To further test whether nitric oxide is involved in UV avoidance, Jokura et al. studied P. dumerilii larvae that had been genetically modified so that any nitric oxide produced by these animals emits a fluorescent signal. They found that UV exposure led to higher levels of fluorescence in the part of the larva where the NOS-expressing interneurons project their dendrites and axons. Furthermore, mutant larvae lacking the gene for NOS did not respond as well to UV light, an effect that has been observed previously in mutant larvae that do not have properly working c-opsin1 photoreceptors (Verasztó et al., 2018). These findings confirm the role of nitric oxide in UV-avoidance.
Next, Jokura et al. investigated how nitric oxide signalling affects the activity of ciliary photoreceptor cells using a fluorescent sensor that can detect changes in calcium levels: the more calcium is present, the more active the cell. UV light exposure caused the ciliary photoreceptors to experience two increases in calcium. This biphasic response depended on c-opsin1 and nitric oxide molecules being retrogradely sent from the NOS-expressing interneurons back to the ciliary photoreceptor cells.
Jokura et al. also identified two unconventional nitrate sensing guanylate cyclases (called NIT-GC1 and NIT-GC2) which mediate nitric oxide signalling in the ciliary photoreceptor cells. These proteins are located in different regions of the photoreceptor and may therefore be involved in different intracellular signalling pathways. Experiments with mutant larvae lacking NIT-GC1 confirmed that this protein is necessary for retrograde nitric oxide signalling to ciliary photoreceptor cells. This leads to a delayed and sustained activation of the ciliary photoreceptors, which then drives the circuit during the second increase in calcium. A mathematical model that analysed the dynamics of the neural circuit, and individual cells within it, confirmed that the magnitude of the nitric oxide signal depends on the intensity and duration of the UV stimulus.
In conclusion, Jokura et al. propose that when P. dumerilii larvae are exposed to UV light, this activates ciliary photoreceptors, which, in turn, triggers postsynaptic interneurons to produce nitric oxide (Figure 1). The nitric oxide signal is then sent back to the ciliary photoreceptors, causing them to sustain their activity (even once the stimulus is gone) via an unconventional guanylate cyclase. This late activation inhibits neurons which promote cilia movement. Jokura et al. propose that slowing the beat of certain cilia may rotate the larva so that its head is pointing downwards, causing it to swim away from UV light at the water surface.
As animals have evolved, their light-response systems have become increasingly sophisticated, especially with the addition of neurons which have further refined this process. Nitric oxide is an ancient signalling molecule that regulates many processes in animals, and its newly discovered role in the ciliated larvae of P. dumerilii may help researchers find missing connections in the light-sensing pathways of other marine invertebrates.
References
Article and author information
Author details
Publication history
Copyright
© 2023, Sachkova and Modepalli
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 513
- views
-
- 52
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.
-
- Developmental Biology
- Neuroscience
Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.