Exploring the role of macromolecular crowding and TNFR1 in cell volume control

  1. Parijat Biswas
  2. Priyanka Roy
  3. Subhamoy Jana
  4. Dipanjan Ray
  5. Jibitesh Das
  6. Bipasa Chaudhuri
  7. Ridita Ray Basunia
  8. Bidisha Sinha  Is a corresponding author
  9. Deepak Kumar Sinha  Is a corresponding author
  1. Indian Association for the Cultivation of Science, India
  2. Indian Institute of Science Education and Research Kolkata, India

Abstract

The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

Data availability

No new datasets were generated by this manuscript. The codes used in the manuscript for analyzing images, FRAP data, and single particle tracking are freely available online in GitHub, under the URL: https://github.com/bparijat/ImageJ-Macros__MatLab-codes/tree/main/MMC-TNFR1_in_CellVolumeControl. Descriptions of the codes are provided in a README file along with the codes. Any queries regarding operational details of the codes can be forwarded to the owner of the GitHub repository via direct messaging. Source data for Western blotting, immunofluorescence images, and histograms are provided with figures, and further queries can be forwarded to the authors.

Article and author information

Author details

  1. Parijat Biswas

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2235-2384
  2. Priyanka Roy

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4197-8211
  3. Subhamoy Jana

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanjan Ray

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2819-3284
  5. Jibitesh Das

    Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3611-5902
  6. Bipasa Chaudhuri

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0001-3652-2922
  7. Ridita Ray Basunia

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Bidisha Sinha

    Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
    For correspondence
    bidisha.sinha@iiserkol.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6449-8205
  9. Deepak Kumar Sinha

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    For correspondence
    emaildks@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8303-5035

Funding

Department of Science and Technology, Ministry of Science and Technology, India (CRG/2022/005356)

  • Deepak Kumar Sinha

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR6995/BRB/10/1140/2012)

  • Deepak Kumar Sinha

Wellcome Trust DBT India Alliance (IA/I/13/1/500885)

  • Bidisha Sinha

Indian Association for the Cultivation of Science

  • Parijat Biswas
  • Subhamoy Jana
  • Ridita Ray Basunia

Council of Scientific and Industrial Research, India

  • Priyanka Roy
  • Dipanjan Ray

University Grants Commission

  • Jibitesh Das
  • Bipasa Chaudhuri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Biswas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,098
    views
  • 211
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parijat Biswas
  2. Priyanka Roy
  3. Subhamoy Jana
  4. Dipanjan Ray
  5. Jibitesh Das
  6. Bipasa Chaudhuri
  7. Ridita Ray Basunia
  8. Bidisha Sinha
  9. Deepak Kumar Sinha
(2024)
Exploring the role of macromolecular crowding and TNFR1 in cell volume control
eLife 13:e92719.
https://doi.org/10.7554/eLife.92719

Share this article

https://doi.org/10.7554/eLife.92719

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.