Exploring the role of macromolecular crowding and TNFR1 in cell volume control

  1. Parijat Biswas
  2. Priyanka Roy
  3. Subhamoy Jana
  4. Dipanjan Ray
  5. Jibitesh Das
  6. Bipasa Chaudhuri
  7. Ridita Ray Basunia
  8. Bidisha Sinha  Is a corresponding author
  9. Deepak Kumar Sinha  Is a corresponding author
  1. Indian Association for the Cultivation of Science, India
  2. Indian Institute of Science Education and Research Kolkata, India

Abstract

The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

Data availability

No new datasets were generated by this manuscript. The codes used in the manuscript for analyzing images, FRAP data, and single particle tracking are freely available online in GitHub, under the URL: https://github.com/bparijat/ImageJ-Macros__MatLab-codes/tree/main/MMC-TNFR1_in_CellVolumeControl. Descriptions of the codes are provided in a README file along with the codes. Any queries regarding operational details of the codes can be forwarded to the owner of the GitHub repository via direct messaging. Source data for Western blotting, immunofluorescence images, and histograms are provided with figures, and further queries can be forwarded to the authors.

Article and author information

Author details

  1. Parijat Biswas

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2235-2384
  2. Priyanka Roy

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4197-8211
  3. Subhamoy Jana

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Dipanjan Ray

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2819-3284
  5. Jibitesh Das

    Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3611-5902
  6. Bipasa Chaudhuri

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0001-3652-2922
  7. Ridita Ray Basunia

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Bidisha Sinha

    Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
    For correspondence
    bidisha.sinha@iiserkol.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6449-8205
  9. Deepak Kumar Sinha

    School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
    For correspondence
    emaildks@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8303-5035

Funding

Department of Science and Technology, Ministry of Science and Technology, India (CRG/2022/005356)

  • Deepak Kumar Sinha

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR6995/BRB/10/1140/2012)

  • Deepak Kumar Sinha

Wellcome Trust DBT India Alliance (IA/I/13/1/500885)

  • Bidisha Sinha

Indian Association for the Cultivation of Science

  • Parijat Biswas
  • Subhamoy Jana
  • Ridita Ray Basunia

Council of Scientific and Industrial Research, India

  • Priyanka Roy
  • Dipanjan Ray

University Grants Commission

  • Jibitesh Das
  • Bipasa Chaudhuri

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Biswas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 711
    views
  • 166
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parijat Biswas
  2. Priyanka Roy
  3. Subhamoy Jana
  4. Dipanjan Ray
  5. Jibitesh Das
  6. Bipasa Chaudhuri
  7. Ridita Ray Basunia
  8. Bidisha Sinha
  9. Deepak Kumar Sinha
(2024)
Exploring the role of macromolecular crowding and TNFR1 in cell volume control
eLife 13:e92719.
https://doi.org/10.7554/eLife.92719

Share this article

https://doi.org/10.7554/eLife.92719

Further reading

    1. Cell Biology
    Weihong Xiong, Maozhen Qin, Haining Zhong
    Short Report

    Protein kinase A (PKA) plays essential roles in diverse cellular functions. However, the spatiotemporal dynamics of endogenous PKA upon activation remain debated. The classical model predicts that PKA catalytic subunits dissociate from regulatory subunits in the presence of cAMP, whereas a second model proposes that catalytic subunits remain associated with regulatory subunits following physiological activation. Here, we report that different PKA subtypes, as defined by the regulatory subunit, exhibit distinct subcellular localization at rest in CA1 neurons of cultured hippocampal slices. Nevertheless, when all tested PKA subtypes are activated by norepinephrine, presumably via the β-adrenergic receptor, catalytic subunits translocate to dendritic spines but regulatory subunits remain unmoved. These differential spatial dynamics between the subunits indicate that at least a significant fraction of PKA dissociates. Furthermore, PKA-dependent regulation of synaptic plasticity and transmission can be supported only by wildtype, dissociable PKA, but not by inseparable PKA. These results indicate that endogenous PKA regulatory and catalytic subunits dissociate to achieve PKA function in neurons.

    1. Cell Biology
    Jeongsik Kim, Dahyun Kim ... Dae-Sik Lim
    Research Article

    Cell survival in metazoans depends on cell attachment to the extracellular matrix (ECM) or to neighboring cells. Loss of such attachment triggers a type of programmed cell death known as anoikis, the acquisition of resistance to which is a key step in cancer development. The mechanisms underlying anoikis resistance remain unclear, however. The intracellular F-actin cytoskeleton plays a key role in sensing the loss of cell–ECM attachment, but how its disruption affects cell fate during such stress is not well understood. Here, we reveal a cell survival strategy characterized by the formation of a giant unilocular vacuole (GUVac) in the cytoplasm of the cells whose actin cytoskeleton is disrupted during loss of matrix attachment. Time-lapse imaging and electron microscopy showed that large vacuoles with a diameter of >500 nm accumulated early after inhibition of actin polymerization in cells in suspension culture, and that these vacuoles subsequently coalesced to form a GUVac. GUVac formation was found to result from a variation of a macropinocytosis-like process, characterized by the presence of inwardly curved membrane invaginations. This phenomenon relies on both F-actin depolymerization and the recruitment of septin proteins for micron-sized plasma membrane invagination. The vacuole fusion step during GUVac formation requires PI(3)P produced by VPS34 and PI3K-C2α on the surface of vacuoles. Furthermore, its induction after loss of matrix attachment conferred anoikis resistance. Our results thus show that the formation of a previously unrecognized organelle promotes cell survival in the face of altered actin and matrix environments.