Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease
Abstract
Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.
Data availability
The datasets and computer code produced in this study are available in the following databases:-All scripts related to this manuscript can be consulted here: https://github.com/saezlab/MOFAcell.-The R package implementing multicellular factor analysis can be found in:https://github.com/saezlab/MOFAcellulaR-The python implementation of multicellular factor analysis is available here:https://liana-py.readthedocs.io/en/latest/notebooks/mofacellular.html-A Zenodo entry containing data associated to this manuscript can be accessed here: https://zenodo.org/record/8082895.
-
Multiplexing droplet-based single cell RNA-sequencing using genetic barcodesGene Expression Omnibus GSE96583.
-
Spatial multi-omic map of human myocardial infarctionHuman Cell Atlas Data Portal, e9f36305-d857-44a3-93f0-df4e6007dc97.
-
Cells of the Adult Heartad98d3cd-26fb-4ee3-99c9-8a2ab085e737.
-
The Reference of the Transcriptional Landscape of Human End-Stage Heart FailureZenodo, doi: 10.5281/zenodo.3797044.
-
Pathogenic variants damage cell composition and single cell transcription in cardiomyopathiescellxgene, e75342a8-0f3b-4ec5-8ee1-245a23e0f7cb.
Article and author information
Author details
Funding
DFG CRC 1550 (464424253)
- Ricardo Omar Ramirez Flores
- Julio Saez-Rodriguez
Informatics for Life
- Jan David Lanzer
- Julio Saez-Rodriguez
EU ITN Marie Curie StrategyCKD (860329)
- Daniel Dimitrov
- Julio Saez-Rodriguez
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Ramirez Flores et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,711
- views
-
- 487
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.
-
- Computational and Systems Biology
- Genetics and Genomics
Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.