Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease

Abstract

Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.

Data availability

The datasets and computer code produced in this study are available in the following databases:-All scripts related to this manuscript can be consulted here: https://github.com/saezlab/MOFAcell.-The R package implementing multicellular factor analysis can be found in:https://github.com/saezlab/MOFAcellulaR-The python implementation of multicellular factor analysis is available here:https://liana-py.readthedocs.io/en/latest/notebooks/mofacellular.html-A Zenodo entry containing data associated to this manuscript can be accessed here: https://zenodo.org/record/8082895.

The following previously published data sets were used

Article and author information

Author details

  1. Ricardo Omar Ramirez Flores

    Faculty of Medicine, Heidelberg University, Heidelberg, Germany
    For correspondence
    roramirezf@uni-heidelberg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0087-371X
  2. Jan David Lanzer

    Faculty of Medicine, Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  3. Daniel Dimitrov

    Faculty of Medicine, Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  4. Britta Velten

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8397-3515
  5. Julio Saez-Rodriguez

    Faculty of Medicine, Heidelberg University, Heidelberg, Germany
    For correspondence
    pub.saez@uni-heidelberg.de
    Competing interests
    Julio Saez-Rodriguez, reports funding from GSK, Pfizer and Sanofi and fees/honoraria from Travere Therapeutics, Stadapharm, Astex, Pfizer and Grunenthal..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8552-8976

Funding

DFG CRC 1550 (464424253)

  • Ricardo Omar Ramirez Flores
  • Julio Saez-Rodriguez

Informatics for Life

  • Jan David Lanzer
  • Julio Saez-Rodriguez

EU ITN Marie Curie StrategyCKD (860329)

  • Daniel Dimitrov
  • Julio Saez-Rodriguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ramirez Flores et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,499
    views
  • 548
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ricardo Omar Ramirez Flores
  2. Jan David Lanzer
  3. Daniel Dimitrov
  4. Britta Velten
  5. Julio Saez-Rodriguez
(2023)
Multicellular factor analysis of single-cell data for a tissue-centric understanding of disease
eLife 12:e93161.
https://doi.org/10.7554/eLife.93161

Share this article

https://doi.org/10.7554/eLife.93161

Further reading

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.