Sleep: Another benefit of regular sleep

A large observational study has found that irregular sleep-wake patterns are associated with a higher risk of overall mortality, and also mortality from cancers and cardiovascular disease.
  1. Tianyi Huang  Is a corresponding author
  1. Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, United States
  2. Division of Sleep Medicine, Harvard Medical School, United States

Benjamin Franklin’s famous quotation – “Early to bed and early to rise makes a man healthy, wealthy, and wise” – underscores the importance of sleep-wake patterns to our health and well-being. Of all the phenomena that are influenced by the 24 hour light-dark cycle, the sleep-wake cycle is the best known, but many other biological processes central to health are also influenced. However, empirical evidence about the impact that disruptions to sleep-wake patterns have on human health remains sparse and is mostly limited to studies on shift workers, despite an increase in other forms of disruption (notably higher levels of artificial light at night and increased use of mobile media in bed).

In recent years, an increasing number of studies have looked at the impact of sleep regularity (and irregularity) on aspects of health besides sleep quantity and quality, often made possible by the availability of wearable technology that is able to monitor rest-activity cycles in large numbers of people. Studies have found evidence that sleep irregularity is associated with a higher incidence of obesity (Patel et al., 2014), depression (Fang et al., 2021), cardiovascular disease (Huang et al., 2020) and other chronic disease outcomes.

Now, in eLife, Matthew Pase, Andree-Ann Baril and colleagues – including Lachlan Cribb, Ramon Sha and Stephanie Yiallourou, all of Monash University, as joint first authors – go one step further by linking sleep regularity with all-cause and cause-specific mortality in a large UK population (Cribb et al., 2023). Between 2013 and 2015, a total of more than 106,000 participants in the UK wore a watch-like device called an accelerometer over seven consecutive days. Based on the signals from this device it was possible to tell when the participants were asleep, sedentary, or active. Cribb et al. then derived a novel metric called the Sleep Regularity Index (SRI) to quantify day-to-day consistency in sleep-wake schedules. This metric is an estimate of how likely it is that a person is in the same state (that is, either awake or asleep) at any two time points 24 hours apart, with higher SRI values indicating higher sleep regularity. The researchers also noted how many of the participants subsequently died (via data from the UK national death register).

Over a median follow-up of 7.1 years, some 3,010 participants died, with 1,701 of these deaths being due to cancers and 616 being due to cardiovascular disease. Compared with those who had a medium SRI value, the top 5% (that is, the most regular sleepers) had 10% lower all-cause mortality, and the bottom 5% (that is, the most irregular sleepers) had 53% higher mortality. The association appeared nonlinear, with stronger associations observed for the increased mortality with more irregular sleep. Similar nonlinear patterns were observed when Cribb et al. examined cancer mortality and cardiovascular disease mortality separately.

The work by Cribb et al. is consistent with recent studies on sleep regularity and mortality from the US and Japan, although these findings are based on a smaller sample size (Chung et al., 2023a) or on self-reported sleep regularity (Omichi et al., 2022). Other studies found that sleep regularity was a stronger predictor for mortality than sleep duration or sleep apnea (Chung et al., 2023b; Windred et al., 2023). Interestingly, a genome-wide association study for sleep traits (Jones et al., 2019) reported a heritability estimate of 2.8% for sleep regularity, compared with 19.0% for sleep duration and 22.3% for fragmented sleep: this suggests that it may be easier to modify sleep regularity via interventions than it would be to modify other sleep traits because sleep regularity is less genetically determined.

Promoting sleep regularity is not a new idea in the area of ‘sleep hygiene’, and encouraging regular sleep schedules is also an essential component in cognitive behavioral therapy for insomnia (Sletten et al., 2023). From the behavioral perspective, promoting sleep regularity may also enhance the time-of-day effect of other behaviors, such as time-restricted eating and exercise. However, promoting sleep regularity for broader health promotion and disease prevention has not been tested in intervention studies and requires additional evidence from future investigations.

In summary, the study by Cribb et al. adds to the emerging evidence for the potential benefits of sleep regularity on chronic disease risk and mortality. The findings, in conjunction with prior evidence, provide a strong foundation to answer the following question: would public health interventions to improve sleep regularity causally lead to reductions in chronic disease and premature deaths at the population level?

References

Article and author information

Author details

  1. Tianyi Huang

    Tianyi Huang is in the Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, United States, and the Division of Sleep Medicine, Harvard Medical School, Boston, United States

    For correspondence
    tih541@mail.harvard.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8420-9167

Publication history

  1. Version of Record published:

Copyright

© 2023, Huang

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 957
    views
  • 75
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tianyi Huang
(2023)
Sleep: Another benefit of regular sleep
eLife 12:e94131.
https://doi.org/10.7554/eLife.94131
  1. Further reading

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.