Isoleucine gate blocks K+ conduction in C-type inactivation

  1. Werner Treptow  Is a corresponding author
  2. Yichen Liu
  3. Carlos AZ Bassetto
  4. Bernardo I Pinto
  5. Joao Antonio Alves Nunes
  6. Ramon Mendoza Uriarte
  7. Christophe J Chipot
  8. Francisco Bezanilla
  9. Benoit Roux  Is a corresponding author
  1. Universidade de Brasilia, Brazil
  2. University of Chicago, United States
  3. University of Brasília, Brazil
  4. Université de Lorraine, France

Abstract

Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. By mutating I398 to Asparagine, ion permeation can be resumed in the kv1.2-kv2.1-3m channel, which was not a reversion C-type inactivation, since AgTxII fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of QA blockers and negatively charged activators thus opening new research directions towards the development of drugs that specifically modulate gating-states of Kv channels.

Data availability

All data considered in the study, including molecular configurations and scripts for MD simulations, MD trajectories, docking configurations and electrophysiology data, can be downloaded from the ZENODO repository 10.5281/zenodo.10938041.

The following data sets were generated

Article and author information

Author details

  1. Werner Treptow

    Laboratório de Biologia Teórica e Computacional, Universidade de Brasilia, Brasilia, Brazil
    For correspondence
    treptow@unb.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-3205
  2. Yichen Liu

    Department of Neurobiology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0774-6932
  3. Carlos AZ Bassetto

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bernardo I Pinto

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0200-1069
  5. Joao Antonio Alves Nunes

    Laboratório de Biologia Teórica e Computacional, University of Brasília, Brasilia, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramon Mendoza Uriarte

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Christophe J Chipot

    LIA CNRS-UIUC, UMR 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9122-1698
  8. Francisco Bezanilla

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6663-7931
  9. Benoit Roux

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    For correspondence
    roux@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5254-2712

Funding

National Institute of Health Sciences (R35-GM152124)

  • Benoit Roux

National Institute of Health Sciences (R01GM030376)

  • Francisco Bezanilla

National Science Foundation (OMA-2121044)

  • Francisco Bezanilla

Pew Charitable Trusts (Fellow)

  • Bernardo I Pinto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Electrophysiology using Xenopus oocytes, in compliance with protocole at University of Chicago.

Copyright

© 2024, Treptow et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 290
    views
  • 75
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Werner Treptow
  2. Yichen Liu
  3. Carlos AZ Bassetto
  4. Bernardo I Pinto
  5. Joao Antonio Alves Nunes
  6. Ramon Mendoza Uriarte
  7. Christophe J Chipot
  8. Francisco Bezanilla
  9. Benoit Roux
(2024)
Isoleucine gate blocks K+ conduction in C-type inactivation
eLife 13:e97696.
https://doi.org/10.7554/eLife.97696

Share this article

https://doi.org/10.7554/eLife.97696

Further reading

    1. Structural Biology and Molecular Biophysics
    Johannes Elferich, Lingli Kong ... Nikolaus Grigorieff
    Research Advance

    Images taken by transmission electron microscopes are usually affected by lens aberrations and image defocus, among other factors. These distortions can be modeled in reciprocal space using the contrast transfer function (CTF). Accurate estimation and correction of the CTF is essential for restoring the high-resolution signal in cryogenic electron microscopy (cryoEM). Previously, we described the implementation of algorithms for this task in the cisTEM software package (Grant et al., 2018). Here we show that taking sample characteristics, such as thickness and tilt, into account can improve CTF estimation. This is particularly important when imaging cellular samples, where measurement of sample thickness and geometry derived from accurate modeling of the Thon ring pattern helps judging the quality of the sample. This improved CTF estimation has been implemented in CTFFIND5, a new version of the cisTEM program CTFFIND. We evaluated the accuracy of these estimates using images of tilted aquaporin crystals and eukaryotic cells thinned by focused ion beam milling. We estimate that with micrographs of sufficient quality CTFFIND5 can measure sample tilt with an accuracy of 3° and sample thickness with an accuracy of 5 nm.

    1. Structural Biology and Molecular Biophysics
    Mrityunjay Singh, Dinesh C Indurthi ... Shailendra Asthana
    Research Advance

    Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α−δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center (‘flip’), loop C undergoes staged downward displacement (‘flop’), and a compact, stable high-affinity pocket forms (‘fix’). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.