Copy number variation and population-specific immune genes in the model vertebrate zebrafish

  1. Yannick Schäfer
  2. Katja Palitzsch
  3. Maria Leptin
  4. Andrew R Whiteley
  5. Thomas Wiehe  Is a corresponding author
  6. Jaanus Suurväli  Is a corresponding author
  1. University of Cologne, Germany
  2. University of Montana, United States
  3. University of Manitoba, Canada

Abstract

Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations we identified a total of 1,513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.

Data availability

NLR reads are available in the NCBI Sequence Read Archive (BioProject PRJNA966920). Scripts are available on GitHub (https://github.com/YSchaefer/pacbio\_zebrafish). Sequences of the hybridization baits are provided as a source dataset.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yannick Schäfer

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Katja Palitzsch

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6292-4925
  3. Maria Leptin

    Institute for Genetics, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-348X
  4. Andrew R Whiteley

    WA Franke College of Forestry and Conservation, University of Montana, Missoula, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Wiehe

    Institute for Genetics, University of Cologne, Cologne, Germany
    For correspondence
    twiehe@uni-koeln.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8932-2772
  6. Jaanus Suurväli

    Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
    For correspondence
    jaanus.suurvali@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0133-7011

Funding

Deutsche Forschungsgemeinschaft (SPP1819)

  • Maria Leptin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Schäfer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 671
    views
  • 97
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yannick Schäfer
  2. Katja Palitzsch
  3. Maria Leptin
  4. Andrew R Whiteley
  5. Thomas Wiehe
  6. Jaanus Suurväli
(2024)
Copy number variation and population-specific immune genes in the model vertebrate zebrafish
eLife 13:e98058.
https://doi.org/10.7554/eLife.98058

Share this article

https://doi.org/10.7554/eLife.98058

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.