FGF8-mediated gene regulation affects regional identity in human cerebral organoids

  1. Michele Bertacchi  Is a corresponding author
  2. Gwendoline Maharaux
  3. Agnès Loubat
  4. Matthieu Jung
  5. Michèle Studer  Is a corresponding author
  1. University Côte d'Azur, France
  2. Université Cote d'Azur, France
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Abstract

The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic domains, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.

Data availability

The raw data from the single-cell RNA sequencing (scRNA-seq) experiments have been deposited in the NCBI Gene Expression Omnibus (GEO) and are publicly available under the accession number GSE276558. Further details can be accessed at the linked repository. Additional data for the graphs of immunostaining pixel intensity, cell counting, or real-time RT-PCR are provided as Source data linked to the images.

The following data sets were generated

Article and author information

Author details

  1. Michele Bertacchi

    Institute of Biology Valrose, University Côte d'Azur, Nice, France
    For correspondence
    Michele.BERTACCHI@univ-cotedazur.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Gwendoline Maharaux

    Institute of Biology Valrose, University Côte d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Agnès Loubat

    Institute of Biology Valrose, Université Cote d'Azur, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthieu Jung

    GenomEast platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Michèle Studer

    Institute of Biology Valrose, University Côte d'Azur, Nice, France
    For correspondence
    michele.studer@unice.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7105-2957

Funding

Agence Nationale de la Recherche (IDEX UCAJedi ANR-15-IDEX-01)

  • Michèle Studer

Fondation pour la Recherche Médicale (EQU202003010222)

  • Michèle Studer

Fondation de France (00123416)

  • Michèle Studer

Agence Nationale de la Recherche (ANR-21-NEU2-0003-03)

  • Michèle Studer

Agence Nationale de la Recherche (ANR-10-INBS-0009)

  • Matthieu Jung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Bertacchi et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 180
    views
  • 70
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michele Bertacchi
  2. Gwendoline Maharaux
  3. Agnès Loubat
  4. Matthieu Jung
  5. Michèle Studer
(2024)
FGF8-mediated gene regulation affects regional identity in human cerebral organoids
eLife 13:e98096.
https://doi.org/10.7554/eLife.98096

Share this article

https://doi.org/10.7554/eLife.98096

Further reading

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.

    1. Developmental Biology
    Sudershana Nair, Nicholas E Baker
    Research Article

    Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Drosophila Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity. Emc, which prevents proneural bHLH transcription factors from specifying neural cell fate, also prevents homodimerization of another bHLH protein, Daughterless (Da), and thereby maintains expression of the Death-Associated Inhibitor of Apoptosis (diap1) gene. Accordingly, we found that multiple effects of emc mutations on cell growth and on eye development were all caused by activation of caspases. These effects included acceleration of the morphogenetic furrow, failure of R7 photoreceptor cell specification, and delayed differentiation of non-neuronal cone cells. Within emc mutant clones, Notch signaling was elevated in the morphogenetic furrow, increasing morphogenetic furrow speed. This was associated with caspase-dependent increase in levels of Delta protein, the transmembrane ligand for Notch. Posterior to the morphogenetic furrow, elevated Delta cis-inhibited Notch signaling that was required for R7 specification and cone cell differentiation. Growth inhibition of emc mutant clones in wing imaginal discs also depended on caspases. Thus, emc mutations reveal the importance of restraining caspase activity even in non-apoptotic cells to prevent abnormal development, in the Drosophila eye through effects on Notch signaling.