Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

  1. Melina Zourelidou
  2. Birgit Absmanner
  3. Benjamin Weller
  4. Inês CR Barbosa
  5. Björn C Willige
  6. Astrid Fastner
  7. Verena Streit
  8. Sarah A Port
  9. Jean Colcombet
  10. Sergio de la Fuente van Bentem
  11. Heribert Hirt
  12. Bernhard Kuster
  13. Waltraud X Schulze
  14. Ulrich Z Hammes
  15. Claus Schwechheimer  Is a corresponding author
  1. Technische Universität München, Germany
  2. Universität Regensburg, Germany
  3. Salk Institute for Biological Studies, United States
  4. Göttingen University Medical Center, Germany
  5. Université Evry, France
  6. Syngenta Seeds B.V, Netherlands
  7. King Abdullah University of Science and Technology, Saudi Arabia
  8. Max-Planck-Institute of Molecular Plant Physiology, Germany

Abstract

The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the - in many cells - asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

Article and author information

Author details

  1. Melina Zourelidou

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Birgit Absmanner

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Weller

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Inês CR Barbosa

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Björn C Willige

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Astrid Fastner

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Verena Streit

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah A Port

    Göttingen University Medical Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean Colcombet

    Université Evry, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergio de la Fuente van Bentem

    Syngenta Seeds B.V, Enkhuizen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Heribert Hirt

    King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernhard Kuster

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Waltraud X Schulze

    Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Ulrich Z Hammes

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Claus Schwechheimer

    Technische Universität München, Freising, Germany
    For correspondence
    claus.schwechheimer@wzw.tum.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations and guidelines based on the Tierschutzgesetz (TierSchG) of the Federal Republic of Germany.

Version history

  1. Received: March 23, 2014
  2. Accepted: June 17, 2014
  3. Accepted Manuscript published: June 19, 2014 (version 1)
  4. Version of Record published: July 15, 2014 (version 2)

Copyright

© 2014, Zourelidou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,042
    views
  • 805
    downloads
  • 189
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melina Zourelidou
  2. Birgit Absmanner
  3. Benjamin Weller
  4. Inês CR Barbosa
  5. Björn C Willige
  6. Astrid Fastner
  7. Verena Streit
  8. Sarah A Port
  9. Jean Colcombet
  10. Sergio de la Fuente van Bentem
  11. Heribert Hirt
  12. Bernhard Kuster
  13. Waltraud X Schulze
  14. Ulrich Z Hammes
  15. Claus Schwechheimer
(2014)
Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID
eLife 3:e02860.
https://doi.org/10.7554/eLife.02860

Share this article

https://doi.org/10.7554/eLife.02860

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.