The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex

  1. Gunther Hollopeter
  2. Jeffrey J Lange
  3. Ying Zhang
  4. Thien N Vu
  5. Mingyu Gu
  6. Michael Ailion
  7. Eric J Lambie
  8. Brian D Slaughter
  9. Jay R Unruh
  10. Laurence Florens
  11. Erik M Jorgensen  Is a corresponding author
  1. Stowers Institute for Medical Research, United States
  2. Howard Hughes Medical Institute, University of Utah, United States
  3. University of Utah, United States
  4. University of Washington, United States
  5. Ludwig-Maximilians-University, Germany

Abstract

The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for C. elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the mu-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.

Article and author information

Author details

  1. Gunther Hollopeter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey J Lange

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Zhang

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thien N Vu

    Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingyu Gu

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Ailion

    University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric J Lambie

    Ludwig-Maximilians-University, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian D Slaughter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jay R Unruh

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Erik M Jorgensen

    Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    For correspondence
    jorgensen@biology.utah.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Hollopeter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,557
    views
  • 594
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gunther Hollopeter
  2. Jeffrey J Lange
  3. Ying Zhang
  4. Thien N Vu
  5. Mingyu Gu
  6. Michael Ailion
  7. Eric J Lambie
  8. Brian D Slaughter
  9. Jay R Unruh
  10. Laurence Florens
  11. Erik M Jorgensen
(2014)
The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex
eLife 3:e03648.
https://doi.org/10.7554/eLife.03648

Share this article

https://doi.org/10.7554/eLife.03648

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Perunthottathu K Umasankar, Li Ma ... Linton M Traub
    Research Article Updated

    Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.