The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex

  1. Gunther Hollopeter
  2. Jeffrey J Lange
  3. Ying Zhang
  4. Thien N Vu
  5. Mingyu Gu
  6. Michael Ailion
  7. Eric J Lambie
  8. Brian D Slaughter
  9. Jay R Unruh
  10. Laurence Florens
  11. Erik M Jorgensen  Is a corresponding author
  1. Stowers Institute for Medical Research, United States
  2. Howard Hughes Medical Institute, University of Utah, United States
  3. University of Utah, United States
  4. University of Washington, United States
  5. Ludwig-Maximilians-University, Germany

Abstract

The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for C. elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the mu-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.

Article and author information

Author details

  1. Gunther Hollopeter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey J Lange

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ying Zhang

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thien N Vu

    Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mingyu Gu

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Ailion

    University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric J Lambie

    Ludwig-Maximilians-University, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Brian D Slaughter

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jay R Unruh

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Erik M Jorgensen

    Howard Hughes Medical Institute, University of Utah, Salt Lake City, United States
    For correspondence
    jorgensen@biology.utah.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Hollopeter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,560
    views
  • 601
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gunther Hollopeter
  2. Jeffrey J Lange
  3. Ying Zhang
  4. Thien N Vu
  5. Mingyu Gu
  6. Michael Ailion
  7. Eric J Lambie
  8. Brian D Slaughter
  9. Jay R Unruh
  10. Laurence Florens
  11. Erik M Jorgensen
(2014)
The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex
eLife 3:e03648.
https://doi.org/10.7554/eLife.03648

Share this article

https://doi.org/10.7554/eLife.03648

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Perunthottathu K Umasankar, Li Ma ... Linton M Traub
    Research Article Updated

    Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.