Metagenomics: Social behavior and the microbiome

  1. Jack A Gilbert  Is a corresponding author
  1. Argonne National Laboratory, United States

Why did social interactions evolve? Complex rules govern how we interact when we meet, and while these principles are often bewildering, they are also somehow intrinsic to the fabric of any human society. Now, in eLife, Elizabeth Archie, Jenny Tung and co-workers have provided compelling evidence to support the theory that physical interaction evolved in vertebrates to help share potentially health-promoting bacteria (Tung et al., 2015).

Tung et al. sequenced the genomes of the various microbes found in the faeces of 48 baboons from two different social groups in Amboseli in Kenya. They found that these ‘microbiomes’ differed between the two social groups, despite them living in overlapping areas and eating similar foods. It has been shown that diet influences the composition and structure of the microbial communities living in the human gut (David et al., 2013). So why were the microbiomes of these groups of baboons not more similar?

The answer lies in the fact that baboons interact by grooming each other (Figure 1). Baboons that groomed each other more frequently had more similar microbiomes, which suggests that physical interactions with others are very important in shaping the microbial communities in these individuals. Baboons don't tend to groom baboons from different social groups (much like humans), so social activities within a group act to consolidate shared communities of microbes.

Baboons that groom each other more often have more similar gut microbiomes.

Image credit: Elizabeth A. Miller.

The need for physical interaction or the presence of others is central to human cognitive psychology. Embodied cognition is the study of how the presence of others affects thoughts, feelings, and behaviors (Meier et al., 2012); for example, we tend to distance ourselves physically from those we don't like or trust, whereas we tend to be more physically close and have more physical interactions with our friends and family.

It is highly probable that evolution has shaped social behavior. Physical interactions with those we love feels good; hugs, kisses, and even basic skin-to-skin contact have positive influences on our thoughts and feelings. The hand-shake—which is the standard mode of introduction in many societies—represents this concept. But why did these interactions evolve? Are they purely social constructs, or is physical interaction instinctive, driven by some selective advantage? Sharing microbes in this way can be beneficial: for example, bumblebees living in the same hive share bacteria through fecal pellets (Koch and Schmid-Hempel, 2011). This protects the bees from the virulent parasite Crithidia bombi, and therefore gives these bees a selective advantage over other bees that don't share bacteria.

Acquiring a beneficial microbiome may actually have shaped the evolution of the immune system, whose primary role is to maintain the balance of ‘good’ and ‘bad’ microbes in the microbiome. The immune system aims to control the exposure of host tissues to the microbiome, which it does in part by directly interacting with the bacteria. For example, the protein immunoglobulin A is released into the gut, where it binds to certain species of bacteria: this reduces the ability of the bacteria to move and keeps them away from the cells of the intestine (Hooper et al., 2012). It is likely that this mechanism is also used to capture certain beneficial microbes and retain them in the gut.

Sharing of microbes through physical interaction has been shown to happen in several vertebrate species. For example, my own work in humans demonstrates that family relationships and co-housing can influence the similarity of the microbiomes of individuals (Lax et al., 2014). In fact, in one of the groups examined, a young couple was shown to have much more similar microbiomes on their skin and in their nose than a lodger living with them in their home: however, the lodger had more microbes in common with the couple than he did with anyone else in the study.

Unlike the baboons—who only share significant amounts of microbes due to physical grooming activity—humans can also share microbes through the artificial environment we have constructed for ourselves. Over the last 100 years or so, these indoor environments have become increasingly isolated from the natural world outside. The microbiome of individuals living in the same indoor space can be shared through the air and via surfaces because humans are the main source of the microbes, and therefore most of the microbes in the space are readily able to colonize the human occupants.

This sharing of microbes might seem like a good idea; it worked for the bees. However, there is now mounting evidence to suggest that the over-sharing of the microbiome may be reducing our exposure to richer microbiomes from other sources, thereby limiting the development of our immune system (Lax et al., 2015). Wild baboons are exposed to many different sources of microbes in their environment, and—while their physical interactions may indeed help to share beneficial bacteria—these other microbes are also likely to support their physical, immunological and neurological development.

One of my colleagues, the eminent microbiologist and microbial ecologist Norman Pace, says that his exploration of the microbial world has made him reluctant to share other people's microbiomes (Personal Communication). In fact, Norman now only ‘fist bumps’ when he meets other people, and never shakes their hands. Is this reduced microbial exposure potentially detrimental to his health? Or could it be that in our modern world, Norman has the right idea?

References

Article and author information

Author details

  1. Jack A Gilbert

    Department of Biosciences and Institute for Genomic and Systems Biology, Argonne National Laboratory, Chicago, United States
    For correspondence
    gilbertjack@anl.gov
    Competing interests
    The author declare that no competing interests exist.

Publication history

  1. Version of Record published: March 31, 2015 (version 1)

Copyright

© 2015, Gilbert

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,907
    views
  • 385
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jack A Gilbert
(2015)
Metagenomics: Social behavior and the microbiome
eLife 4:e07322.
https://doi.org/10.7554/eLife.07322
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.