Precise let-7 expression levels balance organ regeneration against tumor suppression

  1. Linwei Wu
  2. Liem H Nguyen
  3. Kejin Zhou
  4. T Yvanka de Soysa
  5. Lin Li
  6. Jason B Miller
  7. Jianmin Tian
  8. Joseph Locker
  9. Shuyuan Zhang
  10. Gen Shinoda
  11. Marc T Seligson
  12. Lauren R Zeitels
  13. Asha Acharya
  14. Sam C Wang
  15. Joshua T Mendell
  16. Xiaoshun He
  17. Jinsuke Nishino
  18. Sean J Morrison
  19. Daniel J Siegwart
  20. George Q Daley
  21. Ng Shyh-Chang
  22. Hao Zhu  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Boston Children's Hospital and Dana Farber Cancer Institute, United States
  3. University of Pittsburg, United States
  4. The First Affiliated Hospital of Sun Yat-Sen University, China
  5. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States
  6. Harvard Medical School, United States
  7. Children's Hospital and Dana Farber Cancer Institute, United States

Abstract

The in vivo roles for even the most intensely studied microRNAs remain poorly defined. Here, analysis of mouse models revealed that let-7, a large and ancient microRNA family, performs tumor suppressive roles at the expense of regeneration. Too little or too much let-7 resulted in compromised protection against cancer or tissue damage, respectively. Modest let-7 overexpression abrogated MYC-driven liver cancer by antagonizing multiple let-7 sensitive oncogenes. However, the same level of overexpression blocked liver regeneration, while let-7 deletion enhanced it, demonstrating that distinct let-7 levels can mediate desirable phenotypes. let-7 dependent regeneration phenotypes resulted from influences on the insulin-PI3K-mTOR pathway. We found that chronic high-dose let-7 overexpression caused liver damage and degeneration, paradoxically leading to tumorigenesis. These dose-dependent roles for let-7 in tissue repair and tumorigenesis rationalize the tight regulation of this microRNA in development, and have important implications for let-7 based therapeutics.

Article and author information

Author details

  1. Linwei Wu

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Liem H Nguyen

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Kejin Zhou

    Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. T Yvanka de Soysa

    Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  5. Lin Li

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Jason B Miller

    Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Jianmin Tian

    Department of Pathology, University of Pittsburg, Pittsburg, United States
    Competing interests
    No competing interests declared.
  8. Joseph Locker

    Department of Pathology, University of Pittsburg, Pittsburg, United States
    Competing interests
    No competing interests declared.
  9. Shuyuan Zhang

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. Gen Shinoda

    Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Marc T Seligson

    Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Lauren R Zeitels

    Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  13. Asha Acharya

    Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  14. Sam C Wang

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  15. Joshua T Mendell

    Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  16. Xiaoshun He

    Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
    Competing interests
    No competing interests declared.
  17. Jinsuke Nishino

    Children's Medical Center Research Institute at UT Southwestern, Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  18. Sean J Morrison

    Children's Medical Center Research Institute at UT Southwestern, Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    Sean J Morrison, Senior editor, eLife.
  19. Daniel J Siegwart

    Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  20. George Q Daley

    Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  21. Ng Shyh-Chang

    Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  22. Hao Zhu

    Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Hao.Zhu@utsouthwestern.edu
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2012-0143) of the University of Texas Southwestern Medical Center. All surgery was performed under isoflurane anesthesia with appropriate analgesia, and every effort was made to minimize suffering.

Copyright

© 2015, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,151
    views
  • 913
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Linwei Wu
  2. Liem H Nguyen
  3. Kejin Zhou
  4. T Yvanka de Soysa
  5. Lin Li
  6. Jason B Miller
  7. Jianmin Tian
  8. Joseph Locker
  9. Shuyuan Zhang
  10. Gen Shinoda
  11. Marc T Seligson
  12. Lauren R Zeitels
  13. Asha Acharya
  14. Sam C Wang
  15. Joshua T Mendell
  16. Xiaoshun He
  17. Jinsuke Nishino
  18. Sean J Morrison
  19. Daniel J Siegwart
  20. George Q Daley
  21. Ng Shyh-Chang
  22. Hao Zhu
(2015)
Precise let-7 expression levels balance organ regeneration against tumor suppression
eLife 4:e09431.
https://doi.org/10.7554/eLife.09431

Share this article

https://doi.org/10.7554/eLife.09431

Further reading

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.

    1. Cell Biology
    Eleanor Martin, Rossana Girardello ... Alexander Ludwig
    Research Article

    Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to an increase in membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. The dynamic assembly and disassembly of caveolae has also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and caveolae-mediated mechanotransduction is poorly understood. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disassembles the caveolar protein coat. Membrane tension also dislodges caveolin-1 from focal adhesion proteins and several mechanosensitive cortical actin regulators including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 are associated with caveolin-1 in a membrane tension-dependent manner, and that ARHGAP29 regulates caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.