SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

  1. Samuel A Myers
  2. Sailaja Peddada
  3. Nilanjana Chatterjee
  4. Tara Freidreich
  5. Kiichrio Tomoda
  6. Gregor Krings
  7. Sean Thomas
  8. Michael Broeker
  9. Jason Maynard
  10. Matthew Thomson
  11. Katherine Pollard
  12. Shinya Yamanaka
  13. Alma L Burlingame
  14. Barbara Panning  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Gladstone Institute University of California, San Francisco, United States

Abstract

The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc modification, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor.

Article and author information

Author details

  1. Samuel A Myers

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Sailaja Peddada

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Nilanjana Chatterjee

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Tara Freidreich

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Kiichrio Tomoda

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Gregor Krings

    Department of Pathology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Sean Thomas

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Michael Broeker

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Jason Maynard

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Matthew Thomson

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Katherine Pollard

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  12. Shinya Yamanaka

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    Shinya Yamanaka, scientific advisor of iPS Academia Japan without salary.
  13. Alma L Burlingame

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Barbara Panning

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    barbara.panning@gmail.com
    Competing interests
    No competing interests declared.

Copyright

© 2016, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.10647

Further reading

    1. Biochemistry and Chemical Biology
    Vladimir Khayenko, Cihan Makbul ... Hans Michael Maric
    Research Article

    The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.