SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

Abstract

The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc modification, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor.

Article and author information

Author details

  1. Samuel A Myers

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Sailaja Peddada

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Nilanjana Chatterjee

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Tara Freidreich

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Kiichrio Tomoda

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  6. Gregor Krings

    Department of Pathology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Sean Thomas

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Michael Broeker

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Jason Maynard

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Matthew Thomson

    Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Katherine Pollard

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  12. Shinya Yamanaka

    Gladstone Institute University of California, San Francisco, San Francisco, United States
    Competing interests
    Shinya Yamanaka, scientific advisor of iPS Academia Japan without salary.
  13. Alma L Burlingame

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Barbara Panning

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    barbara.panning@gmail.com
    Competing interests
    No competing interests declared.

Copyright

© 2016, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,725
    views
  • 952
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel A Myers
  2. Sailaja Peddada
  3. Nilanjana Chatterjee
  4. Tara Freidreich
  5. Kiichrio Tomoda
  6. Gregor Krings
  7. Sean Thomas
  8. Michael Broeker
  9. Jason Maynard
  10. Matthew Thomson
  11. Katherine Pollard
  12. Shinya Yamanaka
  13. Alma L Burlingame
  14. Barbara Panning
(2016)
SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells
eLife 5:e10647.
https://doi.org/10.7554/eLife.10647

Share this article

https://doi.org/10.7554/eLife.10647

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.